Формула количества теплоты. Количество теплоты: понятие, расчеты, применение

В физике понятие "тепло" связано с процессами передачи термической энергии между различными телами. Благодаря этим процессам происходит нагрев и охлаждение тел, а также изменение их агрегатных состояний. Рассмотрим подробнее вопрос, что такое тепло.

Концепция понятия

Что такое тепло? Каждый человек может ответить на этот вопрос с бытовой точки зрения, подразумевая под рассматриваемым понятием ощущения, которые у него возникают при увеличении температуры окружающей среды. В физике же под данным явлением понимают процесс передачи энергии, связанный с изменением интенсивности хаотичного движения молекул и атомов, которые образуют тело.

В общем случае можно сказать, что чем больше температура тела, тем больше в нем запасено внутренней энергии, и тем большее количество тепла оно может отдать другим объектам.

Тепло и температура

Зная ответ на вопрос, что такое тепло, многие могут подумать, что эта концепция аналогична понятию "температура", но это не так. Тепло - это кинетическая энергия, температура же - это мера этой энергии. Так, процесс передачи тепла зависит от массы вещества, от количества частиц, которые его составляют, а также от типа этих частиц и средней скорости их движения. В свою очередь температура зависит только от последнего из перечисленных параметров.

Отличие между теплом и температурой легко понять, если провести простой эксперимент: необходимо в два сосуда налить воду так, чтобы один сосуд был полный, а другой наполнен лишь наполовину. Поставив оба сосуда на огонь, можно наблюдать, что первым начнет кипеть тот, в котором меньше воды. Чтобы закипел второй сосуд, ему понадобиться еще некоторое количество тепла от огня. Когда оба сосуда будут кипеть, то можно измерить их температуру, она окажется одинаковой (100 o C), но при этом для полного сосуда понадобилось больше тепла, чтобы вода в нем закипела.

Единицы измерения тепла

Согласно определению тепла в физике, можно догадаться, что оно измеряется в тех же единицах, что и энергия или работа, то есть в джоулях (Дж). Помимо основной единицы измерения тепла, в быту часто можно слышать о калориях (ккал). Под этим понятием понимают количество теплоты, которое нужно передать одному грамму воды, чтобы ее температура поднялась на 1 кельвин (К). Одна калория равна 4,184 Дж. Также можно слышать о больших и малых калориях, которые являются 1 ккал и 1 кал, соответственно.

Понятие теплоемкости

Зная, что такое тепло, рассмотрим физическую величину, которая непосредственно его характеризует - теплоемкость. Под данным понятием в физике подразумевают количество теплоты, которое необходимо отдать телу или забрать у него, чтобы его температура изменилась на 1 кельвин (К).

Теплоемкость конкретного тела зависит от 2-х главных факторов:

Чтобы эту характеристику сделать не зависящей от массы объекта, в физике тепла ввели другу величину - удельную теплоемкость, которая определяет количество переданного или взятого тепла данным телом на 1 кг его массы при изменении температуры на 1 К.

Чтобы наглядно показать различие в удельных теплоемкостях для разных веществ, можно для примера взять 1 г воды, 1 г железа и 1 г подсолнечного масла и нагревать их. Быстрее всего температура будет меняться для железного образца, затем для капли масла, и в последнюю очередь для воды.

Отметим, что удельная теплоемкость зависит не только от химического состава вещества, но и от его агрегатного состояния, а также от внешних физических условий, при которых она рассматривается (постоянное давление или постоянный объем).

Главное уравнение процесса передачи тепла

Разобравшись с вопросом, что такое тепло, следует привести основное математическое выражение, которое характеризуется процесс его передачи для абсолютно любых тел в любых агрегатных состояниях. Это выражение имеет вид: Q = c*m*ΔT, где Q - количество переданной (принятой) теплоты, c - удельная теплоемкость рассматриваемого объекта, m - его масса, ΔT - изменение абсолютной температуры, которое определяется как разница температур тела в конце и в начала процесса передачи тепла.

Важно понимать, что приведенная формула будет справедливой всегда, когда во время рассматриваемого процесса объект сохраняет свое агрегатное состояние, то есть остается жидкостью, твердым телом или газом. В противном случае уравнение нельзя использовать.

Изменение агрегатного состояния вещества

Как известно, существует 3 основных агрегатных состояния, в которых может находиться материя:

  • жидкость;
  • твердое тело.

Чтобы произошел переход из одного состояния в другое, необходимо телу сообщить либо отнять у него тепло. Для таких процессов в физике ввели понятия удельных теплот плавления (кристаллизации) и кипения (конденсации). Все эти величины определяют количество тепла, необходимого для изменения агрегатного состояния, которое выделяет или поглощает 1 кг массы тела. Для этих процессов справедливо уравнение: Q = L*m, где L - удельная теплота соответствующего перехода между состояниями вещества.

Ниже приведем основные особенности процессов изменения агрегатного состояния:

  1. Эти процессы идут при постоянной температуре, например, температуре кипения или плавления.
  2. Они являются обратимыми. Например, количество тепла, которое поглотило данное тело, чтобы расплавиться, будет точно равно количеству тепла, которое выделиться в окружающую среду, если это тело снова перейдет в твердое состояние.

Это еще один важный вопрос, связанный с концепцией "тепло", который необходимо рассмотреть. Если два тела с разной температурой привести в контакт, то через некоторое время температура во всей системе выровняется и станет одинаковой. Для достижения термического равновесия тело с большей температурой должно отдать тепло в систему, а тело с меньшей температурой должно принять это тепло. Законы физики тепла, описывающие этот процесс, можно выразить в виде комбинации главного уравнения передачи тепла и уравнения, которое определяет изменение агрегатного состояния вещества (если таковое имеется).

Ярким примером процесса самопроизвольного установления термического равновесия является раскаленный железный брус, который брошен в воду. При этом горячее железо будет отдавать воде тепло до тех пор, пока его температура не станет равной температуре жидкости.

Основные способы передачи тепла

Все известные человеку процессы, которые идут с обменом тепловой энергией, происходят тремя различными способами:

  • Теплопроводность. Чтобы происходил теплообмен этим способом, необходим контакт двух тел с различной температурой. В зоне контакта на локально-молекулярном уровне происходит передача кинетической энергии от горячего тела к холодному. Скорость этой теплопередачи зависит от способности участвующих тел проводить тепло. Ярким является касание человеком металлического стержня.
  • Конвекция. Этот процесс требует перемещения вещества, поэтому он наблюдается только в жидкостях и газах. Суть конвекции заключается в следующем: когда газовые или жидкие слои нагреваются, то их плотность уменьшается, поэтому они стремятся подняться вверх. Во время своего подъема в объеме жидкости или газа они переносят тепло. Примером конвекции является процесс закипания воды в чайнике.
  • Излучение. Этот процесс передачи тепла происходит за счет испускания нагретым телом электромагнитного излучения различных частот. Солнечный свет - яркий

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Теплота - энергия, передаваемая от более нагретого тела менее нагретому при непосредственном соприкосновении или излучением.

Мерой интенсивности движения молекул является температура .

Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37°С. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций , работающих на ископаемом топливе (угле , нефти) и вырабатывающих электроэнергию .

До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем <калорической жидкости>, или <теплорода>. Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли <калорическую> теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом - это всего лишь энергия движения его атомов или молекул . Именно такого понимания теплоты придерживается современная физика.

В этой статье мы рассмотрим, как связаны между собой теплота и температура и каким образом измеряют эти величины. Предметом нашего обсуждения будут также следующие вопросы: передача теплоты от одной части тела к другой; перенос теплоты в вакууме (пространстве, не содержащем вещества); роль теплоты в современном мире.

Теплота и температура

Количество тепловой энергии в веществе нельзя определить, наблюдая за движением каждой его молекулы по отдельности. Напротив, только изучая макроскопические свойства вещества, можно найти усредненные за некий период времени характеристики микроскопического движения многих молекул. Температура вещества - это средний показатель интенсивности движения молекул , энергия которого и есть тепловая энергия вещества.

Один из самых привычных, но и наименее точных способов оценки температуры - на ощупь. Трогая предмет, мы судим о том, горячий он или холодный, ориентируясь на свои ощущения. Конечно, эти ощущения зависят от температуры нашего тела, что подводит нас к понятию теплового равновесия - одному из важнейших при измерении температуры.

Тепловое равновесие

Тепловое равновесие между телами А и В

Очевидно, что если два тела A и B плотно прижать друг к другу, то, потрогав их спустя достаточно долгое время, мы заметим, что температура их одинакова. В этом случае говорят, что тела A и B находятся в тепловом равновесии друг с другом. Однако тела, вообще говоря, не обязательно должны соприкасаться, чтобы между ними существовало тепловое равновесие, - достаточно, чтобы их температуры были одинаковыми. В этом можно убедиться с помощью третьего тела C, приведя его сначала в тепловое равновесие с телом A, а затем сравнив температуры тел C и B. Тело C здесь играет роль термометра . В строгой формулировке этот принцип называется нулевым началом термодинамики : если тела A и B находятся в тепловом равновесии с третьим телом C, то эти тела находятся также в тепловом равновесии друг с другом. Этот закон лежит в основе всех способов измерения температуры.

Измерение температуры

Температурные шкалы

Термометры

Термометры основанные на электрических эффектах

Если мы хотим проводить точные эксперименты и вычисления, то таких оценок температуры, как горячий, теплый, прохладный, холодный, недостаточно - нам нужна проградуированная температурная шкала. Существует несколько таких шкал, и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Четыре наиболее распространенные шкалы представлены на рисунке. Стоградусная шкала, по которой точке замерзания воды соответствует 0°, а точке кипения 100°, называется шкалой Цельсия по имени А.Цельсия, шведского астронома, который описал ее в 1742. Полагают, что впервые применил эту шкалу шведский натуралист К.Линней. Сейчас шкала Цельсия является самой распространенной в мире. Температурная шкала Фаренгейта, в которой точкам замерзания и кипения воды соответствуют крайне неудобные числа 32 и 212°, была предложена в 1724 Г.Фаренгейтом. Шкала Фаренгейта широко распространена в англоязычных странах, но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (°С) в температуру по Фаренгейту (°F) существует формула °F = (9/5)°C + 32, а для обратного перевода - формула °C = (5/9)(°F-32).

Обе шкалы - как Фаренгейта, так и Цельсия, - весьма неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур, в основе которых лежит экстраполяция к так называемому абсолютному нулю - точке, в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина, а другая - абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (°R) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля, а точка замерзания воды соответствует 491,7°R и 273,16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково, но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = °C + 273,16, а градусы Фаренгейта - в градусы Ранкина по формуле °R = °F + 459,7.

В основе действия приборов, предназначенных для измерения температуры, лежат разные физические явления, связанные с изменением тепловой энергии вещества, - изменения электрического сопротивления, объема, давления , излучательных характеристик, термоэлектрических свойств. Один из наиболее простых и знакомых инструментов для измерения температуры - стеклянный термометр , изображенный на рисунке. Шарик с в нижней части термометра располагают в среде или прижимают к предмету, температуру которого хотят измерить, и в зависимости от того, получает шарик тепло или отдает, расширяется или сжимается и ее столбик поднимается или опускается в капилляре. Если термометр заранее проградуирован и снабжен шкалой, то можно прямо узнать температуру тела.

Другой прибор, действие которого основано на тепловом расширении, - биметаллический термометр , изображенный на рисунке. Основной его элемент - спиральная пластинка из двух спаянных металлов с разными коэффициентами теплового расширения. При нагревании один из металлов расширяется сильнее другого, спираль закручивается и поворачивает стрелку относительно шкалы. Такие устройства часто используют для измерения температуры воздуха в помещениях и на улице, однако они не подходят для определения локальной температуры.

Локальную температуру измеряют обычно с помощью термопары , представляющей собой две проволочки из разнородных металлов, спаянные с одного конца. При нагревании такого спая на свободных концах проволочек возникает ЭДС , обычно составляющая несколько милливольт. Термопары делают из разных металлических пар: железа и константана, меди и константана, хромеля и алюмеля . Их термо-ЭДС практически линейно меняется с температурой в широком температурном диапазоне.

Известен и другой термоэлектрический эффект - зависимость сопротивления проводящего материала от температуры . Он лежит в основе работы электрических термометров сопротивления, один из которых изображен на рисунке. Сопротивление небольшого термочувствительного элемента (термопреобразователя) - обычно катушки из тонкой проволоки - сравнивают с сопротивлением проградуированного переменного резистора, используя мост Уитстона. Выходной прибор может быть проградуирован непосредственно в градусах.

Для измерения температуры раскаленных тел, испускающих видимый свет, используют оптические пирометры . В одном из вариантов этого устройства свет, излучаемый телом, сравнивают с излучением нити лампы накаливания, помещенной в фокальную плоскость бинокля, через который смотрят на излучающее тело. Электрический ток , нагревающий нить лампы, изменяют до тех пор, пока при визуальном сравнении свечения нити и тела не обнаружится, что между ними установилось тепловое равновесие. Шкала прибора может быть проградуирована непосредственно в единицах температуры.

Технические достижения последних лет позволили создать новые датчики температуры. Например, в тех случаях, когда нужна особенно высокая чувствительность, вместо термопары или обычного термометра сопротивления используют полупроводниковое устройство - термистор . В качестве термопреобразователей применяют также изменяющие свое фазовое состояние красители и жидкие кристаллы, особенно в тех случаях, когда температура поверхности тела изменяется в широком диапазоне. Наконец, используется инфракрасная термография, в которой получают ИК-изображение объекта в условных цветах, где каждый цвет отвечает определенной температуре. Этот способ измерения температуры находит самое широкое применение - от медицинской диагностики до проверки теплоизоляции помещений.

Измерение количества теплоты

Водяной калориметр

Тепловую энергию (количество теплоты) тела можно измерить непосредственно с помощью так называемого калориметра ; простой вариант такого прибора изображен на рисунке. Это тщательно теплоизолированный закрытый сосуд, снабженный устройствами для измерения температуры внутри него и иногда заполняемый рабочей жидкостью с известными свойствами, например водой . Чтобы измерить количество теплоты в небольшом нагретом теле, его помещают в калориметр и ждут, когда система придет в тепловое равновесие. Количество теплоты, переданное калориметру (точнее, наполняющей его воде), определяют по повышению температуры воды.

Количество теплоты, выделяющейся в ходе химической реакции, например горения, можно измерить, поместив в калориметр небольшую <бомбу>. В <бомбе> находятся образец, к которому подведены электрические провода для поджига, и соответствующее количество кислорода . После того как образец полностью сгорает и устанавливается тепловое равновесие, определяют, насколько повысилась температура воды в калориметре, а отсюда - количество выделившейся теплоты.

Единицы измерения теплоты

Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемных единиц количества теплоты - калорий: международная калория равна 4,1868 Дж, термохимическая калория - 4,1840 Дж. В зарубежных лабораториях результаты исследований часто выражают с помощью т.н. 15-градусной калории, равной 4,1855 Дж. Выходит из употребления внесистемная британская тепловая единица (БТЕ): БТЕ средн = 1,055 Дж.

Источники теплоты

Основными источниками теплоты являются химические и ядерные реакции, а также различные процессы преобразования энергии. Примерами химических реакций с выделением теплоты являются горение и расщепление компонентов пищи. Почти вся теплота, получаемая Землей, обеспечивается ядерными реакциями, протекающими в недрах Солнца. Человечество научилось получать теплоту с помощью управляемых процессов деления ядер, а теперь пытается использовать с той же целью реакции термоядерного синтеза. В теплоту можно превращать и другие виды энергии, например механическую работу и электрическую энергию. Важно помнить, что тепловую энергию (как и любую другую) можно лишь преобразовать в другую форму, но нельзя ни получить <из ничего>, ни уничтожить. Это один из основных принципов науки, называемой термодинамикой .

Термодинамика

Термодинамика - это наука о связи между теплотой, работой и веществом. Современные представления об этих взаимосвязях сформировались на основе трудов таких великих ученых прошлого, как Карно, Клаузиус, Гиббс, Джоуль, Кельвин и др. Термодинамика объясняет смысл теплоемкости и теплопроводности вещества, теплового расширения тел, теплоты фазовых переходов. Эта наука базируется на нескольких экспериментально установленных законах - началах.

Теплота и свойства веществ

Различные вещества обладают разной способностью накапливать тепловую энергию; это зависит от их молекулярной структуры и плотности . Количество теплоты, необходимое для повышения температуры единицы массы вещества на один градус, называется его удельной теплоёмкостью . Теплоёмкость зависит от условий, в которых находится вещество. Например, чтобы нагреть на 1 К один грамм воздуха в воздушном шаре, требуется больше теплоты, чем для такого же его нагрева в герметичном сосуде с жесткими стенками, поскольку часть энергии, сообщаемой воздушному шару, расходуется на расширение воздуха, а не на его нагревание. Поэтому, в частности, теплоёмкость газов измеряют раздельно при постоянном давлении и при постоянном объеме.

При повышении температуры интенсивность хаотического движения молекул возрастает - большинство веществ при нагревании расширяется. Степень расширения вещества при повышении температуры на 1 К называется коэффициентом теплового расширения .

Чтобы вещество перешло из одного фазового состояния в другое, например из твердого в жидкое (а иногда сразу в газообразное), оно должно получить определенное количество тепла . Если нагревать твердое тело, то его температура будет повышаться до тех пор, пока оно не начнет плавиться; до завершения плавления температура тела будет оставаться постоянной, несмотря на подвод тепла . Количество теплоты, необходимое для плавления единицы массы вещества, называется теплотой плавления. Если подводить тепло и дальше, то расплавленное вещество нагреется до кипения. Количество теплоты, необходимое для испарения единицы массы жидкости при данной температуре, называется теплотой парообразования.

Роль теплоты и ее использование

Схема работы паротурбинной электростанции

Схема холодильного цикла

Глобальные процессы теплообмена не сводятся к нагреванию Земли солнечным излучением. Массивными конвекционными потоками в атмосфере определяются суточные изменения погодных условий на всем земном шаре. Перепады температуры в атмосфере между экваториальными и полярными областями совместно с кориолисовыми силами, обусловленными вращением Земли, приводят к появлению непрерывно изменяющихся конвекционных потоков, таких, как пассаты, струйные течения, а также теплые и холодные фронты.

Перенос тепла (за счет теплопроводности) от расплавленного ядра Земли к ее поверхности приводит к извержению вулканов и появлению гейзеров. В некоторых регионах геотермальная энергия используется для обогрева помещений и выработки электроэнергии.

Теплота - непременный участник почти всех производственных процессов. Упомянем такие наиболее важные из них, как выплавка и обработка металлов, работа двигателей, производство пищевых продуктов, химический синтез, переработка нефти, изготовление самых разных предметов - от кирпичей и посуды до автомобилей и электронных устройств.

Многие промышленные производства и транспорт, а также теплоэлектростанции не могли бы работать без тепловых машин - устройств, преобразующих теплоту в полезную работу. Примерами таких машин могут служить компрессоры , турбины , паровые, бензиновые и реактивные двигатели.

Одной из наиболее известных тепловых машин является паровая турбина , в которой реализуется часть цикла Ранкина, используемого на современных электростанциях . Упрощенная схема этого цикла представлена на рисунке. Рабочую жидкость - воду - превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого

На этом уроке мы продолжим изучение внутренней энергии тела, а конкретнее - способов её изменения. И предметом нашего внимания на этот раз станет теплообмен. Мы вспомним, на какие виды он разделяется, в чём измеряется, и по каким соотношениям можно вычислить количество теплоты, переданное в результате теплообмена, также мы дадим определение удельной теплоёмкости тела.

Тема: Основы термодинамики
Урок: Количество теплоты. Удельная теплоемкость

Как мы уже знаем из младших классов, и как мы вспомнили на прошлом уроке, существует два способа изменить внутреннюю энергию тела: выполнить над ним работу или передать ему некое количество теплоты. О первом способе нам уже известно из, опять-таки, прошлого урока, но и о втором мы достаточно много говорили в курсе восьмого класса.

Процесс передачи теплоты (количества теплоты или энергии) без совершения работы называется теплообменом или теплопередачей. Разделяется он по механизмам передачи, как мы знаем, на три вида:

  1. Теплопроводность
  2. Конвекция
  3. Излучение

В результате одного из этих процессов телу передаётся некое количество теплоты, на значение которого, собственно, и меняется внутренняя энергия. Охарактеризуем эту величину.

Определение. Количество теплоты . Обозначение - Q. Единицы измерения - Дж. При изменении температуры тела (что эквивалентно изменению внутренней энергии) количество теплоты, затраченное на это изменение, можно вычислить по формуле:

Здесь: - масса тела; - удельная теплоёмкость тела; - изменение температуры тела.

Причём, если , то есть при охлаждении, говорят, что тело отдало некоторое количество теплоты, или же телу передали отрицательное количество теплоты. Если же , то есть наблюдается нагрев тела, количество переданной теплоты, конечно же, будет положительным.

Особое внимание следует обратить на величину удельной теплоёмкости тела.

Определение. Удельная теплоёмкость - величина, численно равная количеству теплоты, которую необходимо передать, чтобы нагреть один килограмм вещества на один градус. Удельная теплоёмкость - индивидуальная величина для каждого отдельного вещества. Поэтому это табличная величина, заведомо известная при условии, что нам известно, порции какого вещества передаётся тепло.

Единицу измерения удельной теплоёмкости в системе СИ можно получить из вышеприведённого уравнения:

Таким образом:

Рассмотрим теперь случаи, когда передача некого количества теплоты приводит к изменению агрегатного состояния вещества. Напомним, что такие переходы называются плавлением, кристаллизацией, испарением и конденсацией.

При переходе от жидкости к твёрдому телу и наоборот количество теплоты высчитывается по формуле:

Здесь: - масса тела; - удельная теплота плавления тела (количество теплоты, необходимое для полного плавления одного килограмма вещества).

Для того чтобы расплавить тело, ему необходимо передать некое количество теплоты, а при конденсации тело само отдаёт в окружающую среду некое количество теплоты.

При переходе от жидкости к газообразному телу и наоборот количество теплоты высчитывается по формуле:

Здесь: - масса тела; - удельная теплота парообразования тела (количество теплоты, необходимое для полного испарения одного килограмма вещества).

Для того чтобы испарить жидкость, ей необходимо передать некое количество теплоты, а при конденсации пар сам отдаёт в окружающую среду некое количество теплоты.

Следует подчеркнуть также, что и плавление с кристаллизацией, и испарение с конденсацией проходят при постоянной температуре (температура плавления и кипения соответственно) (рис. 1).

Рис. 1. График зависимости температуры (в градусах Цельсия) от полученного количества вещества ()

Отдельно стоит отметить вычисление количества теплоты, выделяющееся при сгорании некоторой массы топлива:

Здесь: - масса топлива; - удельная теплота сгорания топлива (количество теплоты, выделяющееся при сгорании одного килограмма топлива).

Особое внимание нужно обратить на тот факт, что помимо того, что для разных веществ удельные теплоёмкости принимают разные значения, этот параметр может быть различным и для одного и того же вещества при различных условиях. Например, выделяют разные значения удельных теплоёмкостей для процессов нагревания, протекающих при постоянном объёме () и для процессов, протекающих при постоянном давлении ().

Различают также молярную теплоёмкость и просто теплоёмкость.

Определение. Молярная теплоёмкость () - количество теплоты, необходимое для того, чтобы нагреть один моль вещества на один градус.

Теплоёмкость (C ) - количество теплоты, необходимое, чтобы нагреть на один градус порцию вещества определённой массы. Связь теплоёмкости с удельной теплоёмкостью:

На следующем уроке мы рассмотрим такой важный закон, как первый закон термодинамики, который связывает изменение внутренней энергии с работой газа и количеством переданной теплоты.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Словари и энциклопедии на Академике ().
  2. Tt.pstu.ru ().
  3. Elementy.ru ().

Домашнее задание

  1. Стр. 83: № 643-646. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Как связаны между собой молярная и удельная теплоёмкости?
  3. Почему иногда поверхности окон запотевают? С какой стороны окон это происходит?
  4. В какую погоду быстрее высыхают лужи: в спокойную или в ветреную?
  5. *На что затрачивается теплота, полученная телом при плавлении?

Что такое теплота

Чем отличается горячее тело от холодного? На этот вопрос вплоть до начала XIX века отвечали так: горячее тело содержит больше теплорода (или теплотвора), чем холодное. Совершенно так же, как суп более соленый, если содержит больше соли. А что такое теплород? На это следовал ответ: «Теплород – это тепловая материя, это элементарный огонь». Таинственно и непонятно. А по сути дела это ответ такой же, как объяснение, что такое веревка: «Веревка – это вервие простое».

Наряду с теорией теплорода уже давно существовал другой взгляд на природу теплоты. Его отстаивали с большим блеском многие выдающиеся ученые XVI–XVIII столетий.

Фрэнсис Бэкон в своей книге «Новый органон» писал: «Сама теплота в своей сущности есть не что иное, как движение… Теплота состоит в переменном движении мельчайших частей тела».

Роберт Гук в книге «Микрография» утверждал: «Теплота есть непрерывное движение частей тела… Нет такого тела, частички которого были бы в покое».

Особенно отчетливые высказывания такого же рода мы находим у Ломоносова (1745 г.) в его работе «Размышление о причине тепла и холода». В этом сочинении отрицается существование теплорода и говорится, что «теплота состоит во внутреннем движении частичек материи».

Очень образно говорил Румфорд в конце XVIII века: «Тело тем горячее, чем интенсивнее движутся частички, из которых оно построено, подобно тому как колокол звучит тем громче, чем сильнее он колеблется».

В этих замечательных догадках, намного опередивших свое время, кроются основы наших современных взглядов на природу тепла.

Бывают иногда тихие, спокойные, ясные дни. Листочки на деревьях замерли, даже легкая рябь не возмутит водяной глади. Все окружающее застыло в строгой торжественной неподвижности. Покоится видимый мир. Но что при этом происходит в мире атомов и молекул?

Физика наших дней может много рассказать об этом. Никогда, ни при каких условиях не прекращается невидимое движение частичек, из которых построен мир.

Почему же мы не видим всех этих движений? Частицы движутся, а тело покоится. Как это может быть?..

Не приходилось ли вам когда-либо наблюдать рой мошек? В безветренную погоду рой как бы висит в воздухе. А внутри роя идет интенсивная жизнь. Сотня насекомых метнулась вправо, но в этот же момент столько же метнулось влево. Весь рой остался на том же месте и не изменил своей формы.

Невидимые движения атомов и молекул носят такой же хаотический, беспорядочный характер. Если какие-то молекулы ушли из объема, то их место заняли другие. А так как новые пришельцы ничуть не отличаются от ушедших молекул, то тело остается все тем же. Беспорядочное, хаотическое движение частиц не меняет свойств видимого мира.

Однако не пустой ли это разговор, – может спросить нас читатель. Чем эти, пусть красивые, рассуждения доказательнее теории теплорода? Разве кто-нибудь видел вечное тепловое движение частичек вещества?

Тепловое движение частичек можно увидеть и притом при помощи самого скромного микроскопа. Первым наблюдал это явление еще более ста лет назад английский ботаник Броун.

Рассматривая под микроскопом внутреннее строение растения, он заметил, что крошечные частички вещества, плавающие в соке растения, беспрерывно движутся во всех направлениях. Ботаник заинтересовался: какие силы заставляют частички двигаться? Может быть, это какие-то живые существа? Ученый решил рассмотреть под микроскопом мелкие частички глины, взмученные в воде. Но и эти, несомненно неживые, частички не находились в покое, они были охвачены непрерывным хаотическим движением. Чем меньше были частички, тем быстрее они двигались. Долго рассматривал ботаник эту каплю воды, но так и не мог дождаться, когда движение частичек прекратится. Их будто постоянно толкали какие-то невидимые силы.

Броуновское движение частиц – это и есть тепловое движение. Тепловое движение присуще большим и малым частичкам, сгусткам молекул, отдельным молекулам и атомам.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Из книги Эволюция физики автора Эйнштейн Альберт

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги Твиты о вселенной автора Чаун Маркус

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Из книги автора

Молекулярная физика и теплота в XVIII столетии Если механика в XVIII столетии становится зрелой, вполне определившейся областью естествознания, то наука о теплоте делает по существу только первые шаги. Конечно, новый подход к изучению тепловых явлений наметился еще в XVII в.

Из книги автора

Является ли теплота субстанцией? Здесь мы начинаем исследовать новую руководящую идею, возникшую в области тепловых явлений. Однако невозможно разделить науку на отдельные несвязанные разделы. В самом деле, мы скоро увидим, что введенные здесь новые понятия тесно

Из книги автора

Что такое «водоизмещение»? Часто вы слышите: «корабль в столько-то тонн водоизмещения». Как понимать такое выражение?«Водоизмещением» корабля называется вес той воды, которую он вытесняет своею погруженною частью. Корабль в 6 тыс. т водоизмещения вытесняет, держась на

Из книги автора

Что такое раствор Если посолить бульон и размешать ложкой, то не останется и следов соли. Не следует думать, что крупинок соли просто не видно невооруженным глазом. Кристаллики соли никаким способом не удастся обнаружить по той причине, что они растворились. Если

Из книги автора

111. Что такое экзопланета? «Экзо» означает «вне», т. е. вне нашей Солнечной системы. Планеты в нашей Солнечной системе вращаются вокруг Солнца, тогда как экзопланеты - по орбитам других звезд.Число планет в нашей собственной Солнечной системе: 8. Число известных и

Из книги автора

131. Что такое свет? Исаак Ньютон (1643–1727) считал, что свет состоит из крошечных частиц, движущихся прямолинейно. Теория описана в Оптике (Opticks), 1704.Христиан Гюйгенс (1629–1695) не согласился. Он считал, что свет - это волна, как звук. Теория описана в Трактате о Свете (Treatise on Light),

Из книги автора

27 Эмульсии – что это такое? Для опыта нам потребуются: миска с водой, кусок газеты, подсолнечное масло. Мы видели, что одни вещества могут растворяться в других. Но бывает, вещества находятся в жидком состоянии, но не растворяются друг в друге. Самый простой пример –