Как найти полуоси гиперболы. Разбираемся с магией гиперболы

Гипербола и парабола

Переходим ко второй части статьи о линиях второго порядка , посвященной двум другим распространённым кривым – гиперболе и параболе . Если вы зашли на данную страницу с поисковика либо ещё не успели сориентироваться в теме, то рекомендую сначала изучить первый раздел урока, на котором мы рассмотрели не только основные теоретические моменты, но и познакомились с эллипсом . Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

У гиперболы две асимптоты .

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:



Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

1) Прежде всего, находим асимптоты . Если гипербола задана каноническим уравнением , то её асимптотами являются прямые . В нашем случае: . Данный пункт обязателен! Это принципиальная особенность чертежа, и будет грубой ошибкой, если ветви гиперболы «вылезут» за свои асимптоты.

2) Теперь находим две вершины гиперболы , которые расположены на оси абсцисс в точках . Выводится элементарно: если , то каноническое уравнение превращается в , откуда и следует, что . Рассматриваемая гипербола имеет вершины

3) Ищем дополнительные точки. Обычно хватает 2-3-х. В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для 1-ой координатной четверти. Методика точно такая же, как и при построении эллипса . Из канонического уравнения на черновике выражаем:

Уравнение распадается на две функции:
– определяет верхние дуги гиперболы (то, что нам надо);
– определяет нижние дуги гиперболы.

Напрашивается нахождение точек с абсциссами :

4) Изобразим на чертеже асимптоты , вершины , дополнительные и симметричные им точки в других координатных четвертях. Аккуратно соединим соответствующие точки у каждой ветви гиперболы:

Техническая трудность может возникнуть с иррациональным угловым коэффициентом , но это вполне преодолимая проблема.

Отрезок называют действительной осью гиперболы,
его длину – расстоянием между вершинами;
число называют действительной полуосью гиперболы;
число мнимой полуосью .

В нашем примере: , и, очевидно, если данную гиперболу повернуть вокруг центра симметрии и/или переместить, то эти значения не изменятся .

Определение гиперболы. Фокусы и эксцентриситет

У гиперболы, точно так же, как и у эллипса , есть две особенные точки , которые называются фокусами . Не говорил, но на всякий случай, вдруг кто неверно понимает: центр симметрии и точки фокуса, разумеется, не принадлежат кривым .

Общая концепция определения тоже похожа:

Гиперболой называют множество всех точек плоскости, абсолютное значение разности расстояний до каждой из которых от двух данных точек – есть величина постоянная, численно равная расстоянию между вершинами этой гиперболы: . При этом расстояние между фокусами превосходит длину действительной оси: .

Если гипербола задана каноническим уравнением , то расстояние от центра симметрии до каждого из фокусов рассчитывается по формуле: .
И, соответственно, фокусы имеют координаты .

Для исследуемой гиперболы :

Разбираемся в определении. Обозначим через расстояния от фокусов до произвольной точки гиперболы:

Сначала мысленно передвигайте синюю точку по правой ветви гиперболы – где бы мы ни находились, модуль (абсолютное значение) разности между длинами отрезков будет одним и тем же:

Если точку «перекинуть» на левую ветвь, и перемещать её там, то данное значение останется неизменным.

Знак модуля нужен по той причине, что разность длин может быть как положительной, так и отрицательной. Кстати, для любой точки правой ветви (поскольку отрезок короче отрезка ). Для любой точки левой ветви ситуация ровно противоположная и .

Более того, ввиду очевидного свойства модуля безразлично, что из чего вычитать.

Удостоверимся, что в нашем примере модуль данной разности действительно равен расстоянию между вершинами. Мысленно поместите точку в правую вершину гиперболы . Тогда: , что и требовалось проверить.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a) , меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними - фокусным расстоянием, середина O отрезка F_1F_2 - центром гиперболы, число 2a - длиной действительной оси гиперболы (соответственно, a - действительной полуосью гиперболы). Отрезки F_1M и F_2M , соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=\frac{c}{a} , где c=\sqrt{a^2+b^2} , называется эксцентриситетом гиперболы . Из определения (2a<2c) следует, что e>1 .

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей гиперболе, имеем:

\left||\overrightarrow{F_1M}|-|\overrightarrow{F_2M}|\right|=2a.

Записывая это уравнение в координатной форме, получаем:

\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}=\pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\,

где b=\sqrt{c^2-a^2} , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2\!\!\not{\phantom{|}}\,c от нее (рис.3.41,а). При a=0 , когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы ). Здесь F и d - один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:

\sqrt{(x-c)^2+y^2}=e\left(x-\frac{a^2}{c}\right)

Избавляясь от иррациональности и заменяя e=\frac{c}{a},~c^2-a^2=b^2 , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1 :

\frac{r_1}{\rho_1}=e \quad \Leftrightarrow \quad \sqrt{(x+c)^2+y^2}= e\left(x+\frac{a^2}{c} \right).

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2r\varphi (рис.3.41,б) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi} , где p=\frac{p^2}{a} - фокальный параметр гиперболы .

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси - луч с началом в точке F_2 , принадлежащий прямой F_1F_2 , но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,\varphi) , принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a . Выражаем расстояние между точками M(r,\varphi) и F_1(2c,\pi) (см. пункт 2 замечаний 2.8):

F_1M=\sqrt{(2c)^2+r^2-2\cdot(2c)^2\cdot r\cdot\cos(\varphi-\pi)}=\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

R^2+4cr\cdot\cos\varphi+4c^2=4a^2+4ar+r^2 \quad \Leftrightarrow \quad a\left(1-\frac{c}{a}\cos\varphi\right)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=\frac{c}{a},~b^2=c^2-a^2,~p=\frac{b^2}{a} :

R=\frac{c^2-a^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cos\varphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( e>1 для гиперболы, 0\leqslant e<1 для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0 , находим абсциссы точек пересечения: x=\pm a . Следовательно, вершины имеют координаты (-a,0),\,(a,0) . Длина отрезка, соединяющего вершины, равна 2a . Этот отрезок называется действительной осью гиперболы, а число a - действительной полуосью гиперболы. Подставляя x=0 , получаем y=\pm ib . Длина отрезка оси ординат, соединяющего точки (0,-b),\,(0,b) , равна 2b . Этот отрезок называется мнимой осью гиперболы, а число b - мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при a=b ), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox"y" (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y"=\frac{a^2}{2x"} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол \varphi=-\frac{\pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

\left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y",\\ y&=-\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y"\end{aligned}\right. \quad \Leftrightarrow \quad \left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot(x"+y"),\\ y&=\frac{\sqrt{2}}{2}\cdot(y"-x")\end{aligned}\right.

Подставляя эти выражения в уравнение \frac{x^2}{a^2}-\frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

\frac{\frac{1}{2}(x"+y")^2}{a^2}-\frac{\frac{1}{2}(y"-x")^2}{a^2}=1 \quad \Leftrightarrow \quad 2\cdot x"\cdot y"=a^2 \quad \Leftrightarrow \quad y"=\frac{a^2}{2\cdot x"}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр - центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе . то и точки M"(x,y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=\frac{p}{1-e\cos\varphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра - это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси ( r=p при \varphi=\frac{\pi}{2} ).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e , тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина \gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: \operatorname{tg}\frac{\gamma}{2}=\frac{b}{2} . Учитывая, что e=\frac{c}{a} и c^2=a^2+b^2 , получаем

E^2=\frac{c^2}{a^2}=\frac{a^2+b^2}{a^2}=1+{\left(\frac{b}{a}\right)\!}^2=1+\operatorname{tg}^2\frac{\gamma}{2}.

Чем больше e , тем больше угол \gamma . Для равносторонней гиперболы (a=b) имеем e=\sqrt{2} и \gamma=\frac{\pi}{2} . Для e>\sqrt{2} угол \gamma тупой, а для 1

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 и называются сопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение \frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O"(x_0,y_0) , оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O"(x_0,y_0) .

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

\begin{cases}x=a\cdot\operatorname{ch}t,\\y=b\cdot\operatorname{sh}t,\end{cases}t\in\mathbb{R},

где \operatorname{ch}t=\frac{e^t+e^{-t}}{2} - гиперболический косинус, a \operatorname{sh}t=\frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству \operatorname{ch}^2t-\operatorname{sh}^2t=1 .


Пример 3.21. Изобразить гиперболу \frac{x^2}{2^2}-\frac{y^2}{3^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - действительная полуось, b=3 - мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

\frac{4^2}{2^2}-\frac{y^2}{3^2}=1 \quad \Leftrightarrow \quad y^2=27 \quad \Leftrightarrow \quad y=\pm3\sqrt{3}.

Следовательно, точки с координатами (4;3\sqrt{3}) и (4;-3\sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2\cdot c=2\cdot\sqrt{a^2+b^2}=2\cdot\sqrt{2^2+3^2}=2\sqrt{13}

эксцентриситет e=\frac{c}{a}=\frac{\sqrt{13}}{2} ; фокальныи параметр p=\frac{b^2}{a}=\frac{3^2}{2}=4,\!5 . Составляем уравнения асимптот y=\pm\frac{b}{a}\,x , то есть y=\pm\frac{3}{2}\,x , и уравнения директрис: x=\pm\frac{a^2}{c}=\frac{4}{\sqrt{13}} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Презентация и урок на тему:
"Гипербола, определение, свойство функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Электронные учебные таблицы по геометрии. 7-9 классы
Электронные учебные таблицы по алгебре. 7-9 классы"

Гипербола, определение

Ребята, сегодня мы с вами изучим новую функцию и построим ее график.
Рассмотрим функцию: $y=\frac{k}{x}$, $k≠0$.
Коэффициент $k$ – может принимать любые действительные значения, кроме нуля. Для простоты начнем разбор функции со случая, когда $k=1$.
Построим график функции: $y=\frac{1}{x}$.
Как всегда начнем с построения таблицы. Правда в этот раз придется разделить нашу таблицу на две части. Рассмотрим случай, когда $x>0$.
Нам нужно отметить шесть точек с координатами $(x;y)$, которые приведены в таблице и соединить их линией.
Теперь посмотрим, что у нас получается при отрицательных х. Поступим тем же образом, отметим точки и соединим их линией. Два кусочка графика мы построили, давайте объединим их.

График функции $y=\frac{1}{x}$.
График такой функции называется "Гиперболой".

Свойства гиперболы

Согласитесь, график выглядит довольно-таки красиво, и он симметричен относительно начала координат. Если провести любую прямую, проходящую через начало координат, из первой в третью четверть, то она пересечет наш график в двух точках, которые будут одинаково отдалены от начала координат.
Гипербола состоит из двух, симметричных относительно начала координат, частей. Эти части называются, ветвями гиперболы.
Ветви гиперболы в одном направлении (влево и вправо) все больше и больше стремятся к оси абсцисс, но никогда не пересекут ее. В другом направлении (вверх и вниз) стремятся к оси ординат, но также никогда не пересекут ее (так как на ноль делить нельзя). В таких случаях, соответствующие линии называются асимптотами. График гиперболы имеет две асимптоты: ось х и ось у.

У гиперболы есть не только центр симметрии, но и ось симметрии. Ребята, проведите прямую $y=x$ и посмотрите, как разделился наш график. Можно заметить, что если часть, которая расположена выше прямой $y=x$, наложить на часть, которая располагается ниже, то они совпадут, это и означает симметричность относительно прямой.

Мы построили график функции $y=\frac{1}{x}$, но что будет в общем случае $y=\frac{k}{x}$, $k>0$.
Графики практически не будут отличаться. Будет получаться гипербола с теми же ветвями, только чем больше $k$, тем дальше будут удалены ветви от начала координат, а чем меньше $k$, тем ближе подходить к началу координат.

Например, график функции $y=\frac{10}{x}$ выглядит следующим образом. График стал "шире", отдалился от начала координат.
А как быть в случае отрицательных $k$? График функции $y=-f(x)$ симметричен графику $y=f(x)$ относительно оси абсцисс, нужно перевернуть его "вверх ногами".
Давайте воспользуемся этим свойством и построим график функции $y=-\frac{1}{x}$.

Обобщим полученные знания.
Графиком функции $y=\frac{k}{x}$, $k≠0$ является гипербола, расположенная в первой и третье (второй и четвертой) координатных четвертях, при $k>0$ ($k

Свойства функции $y=\frac{k}{x}$, $k>0$

1. Область определения: все числа, кроме $х=0$.
2. $y>0$ при $x>0$, и $y 3. Функция убывает на промежутках $(-∞;0)$ и $(0;+∞)$.



7. Область значений: $(-∞;0)U(0;+∞)$.

Свойства функции $y=\frac{k}{x}$, $k
1. Область определения: все числа кроме $х=0$.
2. $y>0$ при $x 0$.
3. Функция возрастает на промежутках $(-∞;0)$ и $(0;+∞)$.
4. Функция не ограничена ни сверху, ни снизу.
5. Наибольшего и наименьшего значений нет.
6. Функция непрерывна на промежутках $(-∞;0)U(0;+∞)$ и имеет разрыв в точке $х=0$.
7. Область значений: $(-∞;0)U(0;+∞)$.

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое обратная зависимость, и с чем ее едят. Если ты уверен, что знаешь все об обратной зависимости, добро пожаловать. Но если нет, тебе стоит прочитать тему « ».

Также очень советую научиться сперва строить , так как есть некоторые общие принципы для построения графика квадратичной и обратной зависимостей.

Начнем с небольшой проверки:

Что такое обратная пропорциональность?

Как выглядит функция, описывающая обратную зависимость в общем виде (формула)?

Как называется график такой функции?

Какие коэффициенты влияют на график функции, и как?

Если ты сходу смог ответить на эти вопросы, продолжай читать. Если хоть один вопрос вызвал затруднения, перейди по .

Итак, ты уже умеешь обращаться с обратной зависимостью, анализировать ее график и строить график по точкам.

Ну вот и все, ты научился строить любую гиперболу.

Замечу также, что правила построения гиперболы оказались немного проще, чем для параболы, ведь каждое число просто сдвигает график в какую-то одну сторону. И друг с другом коэффициенты не связаны.

ПОСТРОЕНИЕ ГРАФИКА ОБРАТНОЙ ЗАВИСИМОСТИ. КОРОТКО О ГЛАВНОМ

1. Определение

Функция, описывающая обратную зависимость - это функция вида, где.

График обратной зависимости - гипербола.

2. Коэффициенты, и.

Отвечает за «пологость» и направление графика : чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок). Знак коэффициента влияет на то, в каких четвертях расположен график:

  • если, и смещение вниз, если .

    Следовательно, - это горизонтальная асимптота .

    3. Правило построения графика функции:

    0) Определяем коэффициенты, и.

    1) Строим график функции (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).

    2) График должен быть сдвинут вправо на. Но проще двигать не график, а оси, так что ось сдвигаем влево на .

    3) График должен быть сдвинут вверх на. Но проще двигать не график, а оси, так что ось сдвигаем вниз на .

    4) Старые оси (прямые, которые служили нам осями в пункте 1) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!