Принцип работы электромагнитное пушка гаусса. Старт в науке

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов № 1
Тема: Создание экспериментальной установки «Пушка Гаусса»
Выполнил: Ворошилин Антон
Колтунов Василий
Руководитель: Буздалина И. Н.
Воронеж
2017 г.
Оглавление
Введение
1. Теоретическая часть
1.1 Принцип работы.
1.2 История создания.
2. Практическая часть
2.1 Параметры установки
2.2 Вычисление скорости
2.3 Характеристики катушки
Вывод

Введение
Актуальность работы
На протяжении всего периода своего существования человек стремился создавать все более совершенные инструменты. Первые из них помогали человеку более эффективно осуществлять хозяйственную деятельность, другие – осуществляли защиту результатов этой хозяйственной деятельности от посягательств соседей.
В этой работе мы рассмотрим возможность создания и практического применения электромагнитных ускорителей.
Копьё, лук, булава, но вот первые пушки, пистолеты, ружья. На протяжении всего периода человеческого развития развивалось и оружие. И вот уже на смену простейшим кремниевым ружьям пришли автоматические винтовки. Возможно, в будущем и они будут заменены новым видом оружия, например, электромагнитным. Чтобы жить в мире и избегать различных военных конфликтов, сильное государство должно защищать интересы своих граждан, а для этого в своём арсенале оно должно иметь мощное средство обороны, способное защитить от нападения из любой точки нашей планеты. С этой целью нужно двигаться вперед и развивать вооружение. За развитием технологий в военной технике, как известно, следует развитие технологий, используемых населением и в быту.
Одни из самых распространенных видов орудий – это пушки и ружья, использующие энергию, выделяемую при сжигании пороха. Но будущее за электромагнитным оружием, в котором тело приобретает кинетическую энергию за счет энергии электромагнитного поля. Преимуществ этого оружия достаточно.
Рассмотрим положительные стороны использования электромагнитного ускорителя в качестве оружия:
- отсутствие звука при выстреле,
- потенциально большая скорость,
- большая точность,
- большее поражающее действие,
Отрицательные стороны:
- низкий КПД на данный момент;
- большое потребление энергии, громоздкость.
Технологию создания электромагнитной пушки можно использовать для развития транспорта, в частности, для запуска спутников на орбиту. Более совершенные аккумуляторы могут дать толчок развитию экологически чистых способов получения электроэнергии (например, солнечной).
Можно предположить, что развитие этого перспективного вида оружия подтолкнёт человечество не столько к разрушению, сколько к созиданию.

Цель работы:
Создать рабочую модель полноразмерной пушки Гаусса и изучить ее свойства.
Задачи работы:
Изучить целесообразность использования данного вида оружия в реальных условиях.
Измерить КПД установки
Исследовать зависимость массы снаряда и его поражающих свойств.
Гипотеза: Создать рабочую модель пушки Гаусса - модели электромагнитного оружия возможно.

Теоретическая часть.
Принцип работы
Пушка Гаусса состоит из соленоида, внутри которого находится ствол из диэлектрика. В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает магнитное поле (рис. 1), которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, ориентированные согласно полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, то есть тормозится. Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электролитические конденсаторы с высоким рабочим напряжением.
Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

Рис. 1 - правило «правой руки»
История создания.
Электромагнитные пушки разделяют на следующие виды:
Рельсотрон – электромагнитный ускоритель масс, разгоняющий токопроводящий снаряд вдоль двух металлических направляющих с помощью силы Лоренца.
Пушка Гаусса названа по имени немецкого учёного Карла Гаусса, заложившего основы математической теории электромагнетизма. Следует иметь в виду, что этот метод ускорения масс используется в основном в любительских установках, так как не является достаточно эффективным для практической реализации.
Первый работающий образец электромагнитной пушки был разработан норвежским ученым Кристианом Биркелендом в 1904 году и представлял собой примитивное устройство, чьи характеристики были отнюдь не блестящи. В конце Второй Мировой немецкие ученые выдвинули идею о создании электромагнитной пушки для борьбы с самолетами противника. Ни одна из этих пушек так и не была построена. Как выяснили американские ученые, энергии, необходимой для работы каждой такой пушки, было бы достаточно для освещения половины Чикаго. В 1950 году австралийский физик Марк Олифан запустил создание пушки мощность 500 МДж, которая была готова в 1962 году и использовалась для научных экспериментов.
В середине 2000-х американские военные начали разработку боевого экземпляра электромагнитной пушки для своего флота. Они планируют оснастить большое количество кораблей таким типом орудий к 2020 году (рис. 2).
151765112395
рис. 2 - корабль USS Zumwalt, на который планируется установка электромагнитного вооружения

8255207645
(рис. 3 - Карл Гаусс)
Карл Гаусс (1777 - 1855) - немецкий ученый, чьи заслуги перед мировой наукой сложно переоценить. На протяжении своей жизни он был известен как механик, астроном, математик, геодезист, физик. Карл Гаусс заложил основы теории об электромагнитном взаимодействии. Действие рассматриваемого ускорителя масс основано на электромагнитном взаимодействии, поэтому он был назван в честь человека, заложившего основы понимания данного явления.

2.1 Параметры установки
Формулы для вычисления основных параметров установки
Кинетическая энергия снаряда
E=mv22m - масса снаряда
v- его скорость
Энергия, запасаемая в конденсаторе
E=CU22U- напряжение конденсатора
C - ёмкость конденсатора
Время разряда конденсаторов
Это время, за которое конденсатор полностью разряжается:
T=2πLCL - индуктивность
317533401000C - ёмкость
рис. 4 - схема установки
2.2 Вычисление скорости
Скорость полета снаряда вычислили опытным путем. На расстоянии 1 м от установки установили преграду, а затем произвели выстрел. В это время на диктофон записывался звук от момента выстрела до момента попадания снаряда в преграду. После чего загрузили аудиофайл в программу для редактирования звука и по данным диаграммы (рис. 5) вычислили время полета снаряда до цели. Считали, что звук распространяется мгновенно и без отражения в виду маленького расстояния от установки до преграды и маленького размера помещения, где производилось измерение.

Рис. 5 - изображение, полученное на компьютере
Рассчитаем параметры катушки, генерирующей магнитное поле. Система конденсатор-обмотка является колебательным контуром.
Найдем его период колебаний. Время первого полупериода колебаний равно времени, которое гвоздь летит от начала обмотки до её середины, а так как гвоздь изначально покоился, то примерно это время равно длине обмотки деленной на скорость полета снаряда.
Получили, что время полета снаряда t = 0,054 с
Вычислим скорость полета снаряда:
v= St= 18,5 м/сВычислим КПД установки:
η= mv2CU2∙100%=1,13 % . Полезная энергия равна 1,8 Дж.
КПД собранной установки является приемлемым для любительской установки.
2.3 Характеристики катушки
right4445
Кол-во витков: ~ 280
Радиус: 2R = 12; w = 8 мм
Длина обмотки: l - 41 мм
Рассчитаем индуктивность катушки:
L=μ0∙N2R22π(6R+9l+10w)μ0 - относительная магнитная проницаемость стального гвоздя, примерно равная 100.
L = 14.4 мкГн

Рис. 6 - готовая установка

Вывод
В ходе выполнения работы были успешно достигнуты все цели, поставленные нами изначально.
Мы убедились, что, обладая знаниями физики, полученными в школе, можно создать действующие электромагнитное оружие.
Была экспериментально установлена скорость полета снаряда при помощи метода, изобретенного самостоятельно.
Был измерен КПД экспериментальной установки. Он равняется 1,13%. Полученные данные позволяют сделать вывод о том, что в реальных условиях данный вид оружия не будет иметь успешного применения в виду низкого КПД. Эффективное практическое применение будет возможно лишь тогда, когда будут изобретены материалы, позволяющие рассеивать энергию эффективнее, чем медь.

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКАЯ ГОСУДАРСТВЕННАЯ ОБЛАСТНАЯ АКАДЕМИЯ (НАЯНОВОЙ)»

Всероссийский конкурс исследовательских работ

«Познание-2015»

(Секция физика)

Научно-исследовательская работа

по теме: «« из ГОТОВЛЕНИЕ ПУШКИ ГАУССА В ДОМАШНИХ УСЛОВИЯ И ИССЛЕДОВАНИЕ ЕЕ ХАРАКТЕРИСТИК »

направлению: физика

Выполнил:

Ф. И.О. Егоршин Антон

Мурзин Артем

СГОАН, 9 «А2» класс

учебное заведение, класс

Научный руководитель:

Ф. И.О. Завершинская И. А .

к. п.н., преподаватель физики

зав. кафедры физики СГОАН

(уч. степень, должность)

Самара 2015

1. Введение…………………………………………………….......…3

2. Краткая биография…………………………………………..……5

3. Формулы, для расчета характеристик модели Пушки Гаусса...6

4. Практическая часть…………………………………….…..…….8

5. Определение КПД модели…………………………………..….10

6. Дополнительные исследования…………….…………….….…11

7. Заключение……………………………………………….……...13

8. Список литературы……………………………………………...14

Введение

В данной работе мы исследуем пушку Гаусса, которою многие могли видеть в некоторых компьютерных играх. Электромагнитная пушка Гаусса известна всем любителям компьютерных игр и фантастики. Назвали ее в честь немецкого физика Карла Гаусса, исследовавшего принципы электромагнетизма. Но так ли уж далеко смертельное фантастическое оружие от реальности?

Из курса школьной физики мы узнали, что электрический ток, проходя по проводникам, создает вокруг них магнитное поле. Чем больше ток, тем сильнее магнитное поле. Наибольший практический интерес представляет собой магнитное поле катушки с током, иначе говоря, катушки индуктивности (соленоид). Если катушку с током подвесить на тонких проводниках, то она установится в то же положение, в котором находится стрелка компаса. Значит, катушка индуктивности имеет два полюса - северный и южный.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол из диэлектрика. В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, симметричные полюсам катушки, из-за чего после прохода центра соленоида снаряд может притягиваться в обратном направлении и тормозиться.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы. Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индуктивность магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия . Это отсутствие гильз, неограниченность в выборе начальной скорости и энергии боеприпаса , возможность бесшумного выстрела, в том числе без смены ствола и боеприпас. Относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей). Теоретически, большая надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства. Также возможно применение пушек Гаусса для запуска легких спутников на орбиту.

Однако, несмотря на кажущуюся простоту, использование её в качестве оружия сопряжено с серьёзными трудностям:

Низкий КПД – около 10 %. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 30%. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию. Вторая трудность – большой расход энергии и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания. Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения , что значительно уменьшит мобильность пушки Гаусса.

Высокое время перезаряда между выстрелами, то есть низкая скорострельность. Боязнь влаги, ведь намокнув, она поразит током самого стрелка.

Но главная проблема это мощные источники питания пушки, которые на данный момент являются громоздкими, что влияет на мобильность.

Таким образом, на сегодняшний день пушка Гаусса для орудий с малой поражающей способностью (автоматы, пулеметы и т. д.) не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового вооружения. Перспективы появляются при использовании ее как крупно-калиберного орудия военно-морского. Так например, в 2016 году ВМС США приступят к испытаниям на воде рельсотрона. Рельсотрон, или рельсовая пушка - орудие, в котором снаряд выбрасывается не с помощью взрывчатого вещества, а с помощью очень мощного импульса тока. Снаряд располагается между двумя параллельными электродами - рельсами. Снаряд приобретает ускорение за счёт силы Лоренца, которая возникает при замыкании цепи. С помощью рельсотрона можно разогнать снаряд до гораздо больших скоростей, чем с помощью порохового заряда.

Однако, принцип электромагнитного ускорения масс можно с успехом использовать на практике, например, при создании строительных инструментов - актуальное и современное направление прикладной физики . Электромагнитные устройства, преобразующие энергию поля в энергию движения тела, в силу разных причин ещё не нашли широкого применения на практике, поэтому имеет смысл говорить о новизне нашей работы.

Актуальность проекта : данный проект является междисциплинарным и охватывает большое количество материала.

Цель работы : изучить устройство электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса и определить ее КПД.

Основные задачи :

1. Рассмотреть устройство по чертежам и макетам.

2. Изучить устройство и принцип действия электромагнитного ускорителя масс.

3. Создать действующую модель.

4. Определить КПД модели

Практическая часть работы :

Создание функционирующей модели ускорителя масс в условиях дома.

Гипотеза : возможно ли создание простейшей функционирующей модели Пушки Гаусса в условиях дома?

Кратко о самом Гауссе.

(1777-1855) - немецкий математик, астроном, геодезист и физик.

Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры (доказательство основной теоремы алгебры), теории чисел (квадратичные вычеты), дифференциальной геометрии (внутренняя геометрия поверхностей), математической физики (принцип Гаусса), теории электричества и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии .

Карл Гаусс родился 30 апреля 1777, Брауншвейг, ныне Германия. Скончался 23 февраля 1855, Геттинген, Ганноверское королевство, ныне Германия). Еще при жизни он был удостоен почетного титула «принц математиков». Он был единственным сыном бедных родителей. Школьные учителя были так поражены его математическими и лингвистическими способностями, что обратились к герцогу Брауншвейгскому с просьбой о поддержке, и герцог дал деньги на продолжение обучения в школе и в Геттингенском университете (в 1795-98). Степень доктора Гаусс получил в 1799 в университете Хельмштедта.

Открытия в области физики

В 1830-1840 годы Гаусс много внимания уделяет проблемам физики. В 1833 в тесном сотрудничестве с Вильгельмом Вебером Гаусс строит первый в Германии электромагнитный телеграф. В 1839 выходит сочинение Гаусса «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния», в которой излагает. основные положения теории потенциала и доказывает знаменитую теорему Гаусса-Остроградского. Работа «Диоптрические исследования» (1840) Гаусса посвящена теории построения изображений в сложных оптических системах.

Формулы, связанные с принципом действия пушки.

Кинетическая энергия снаряда

https://pandia.ru/text/80/101/images/image003_56.gif" alt="~m" width="17"> - масса снаряда
- его скорость

Энергия, запасаемая в конденсаторе

https://pandia.ru/text/80/101/images/image006_39.gif" alt="~U" width="14" height="14 src="> - напряжение конденсатора

https://pandia.ru/text/80/101/images/image008_36.gif" alt="~T = {\pi\sqrt{LC} \over 2}" width="100" height="45 src=">

https://pandia.ru/text/80/101/images/image007_39.gif" alt="~C" width="14" height="14 src="> - ёмкость

Время работы катушки индуктивности

Это время за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0.

https://pandia.ru/text/80/101/images/image009_33.gif" alt="~L" width="13" height="14 src="> - индуктивность

https://pandia.ru/text/80/101/images/image011_23.gif" alt="индуктивность многослойной катушки, формула" width="201" height="68 src=">

Индуктивность рассчитаем с учетом наличия внутри катушки гвоздя. Поэтому относительную магнитную проницаемость возьмем примерно 100-500. Для изготовления пушки мы изготовили самостоятельно катушку индуктивности с количеством витков 350 (7 слоев по 50 витков, каждый), получили катушку индуктивностью 13,48 мкГн.

Сопротивление проводов рассчитаем по стандартной формуле .

Чем меньше сопротивление, тем лучше. На первый взгляд кажется, что провод большого диаметра лучше, однако это вызывает увеличение геометрических размеров катушки и уменьшение плотности магнитного поля в её середине, так что тут придется искать свою золотую середину.

Из анализа литературы мы пришли к выводу, что для пушки Гаусса, изготавливаемую в домашних условиях медный намоточный провод диаметром 0,8-1,2 мм является вполне приемлемым.

Мощность активных потерь находится по формуле [Вт] Где: I – ток в амперах, R – активное сопротивление проводов в омах.

В этой работе мы не предполагали измерение силы тока и расчет потерь, это вопросы будущей работы, где мы планируем определить ток и энергию катушки..jpg" width="552" height="449">.gif" width="12" height="23"> ; https://pandia.ru/text/80/101/images/image021_8.jpg" width="599 height=906" height="906">

ОПРЕДЕЛЕНИЕ КПД МОДЕЛИ.

Для определения КПД мы провели следующий опыт: стреляли снарядом известной массы в яблоко, известной массы. Яблоко было подвешено на нити длиной 1 м. мы определяли расстояние, на которое отклонится яблоко. По данному отклонению определяем высоту подъема, воспользовавшись теоремой Пифагора.

Результаты опытов по расчёту КПД

Таблица№1

Основные расчеты основаны на законах сохранения:

По закону сохранения энергии определим скорость снаряда, вместе с яблоком:

https://pandia.ru/text/80/101/images/image024_15.gif" width="65" height="27 src=">

https://pandia.ru/text/80/101/images/image026_16.gif" width="129" height="24">

https://pandia.ru/text/80/101/images/image029_14.gif" width="373" height="69 src=">

0 " style="border-collapse:collapse">

Из таблицы видно, что сила выстрела зависит от типа снаряда и от его массы, так как сверло весит столько же, сколько и 4 иглы вместе, но оно толще, цельнее, поэтому его кинетическая энергия больше.

Степени пробития снарядами разных тел:

Тип мишени: тетрадный лист.

Тут все понятно, лист пробивается идеально.

Тип мишени: тетрадь в 18 листов .

Сверло мы брать не стали, так как оно тупое, но отдача существенная.

В данном случае снарядам хватило энергии, чтобы пробить тетрадь, но не хватило ее, чтобы преодолеть силу трения и вылететь с другой стороны. Здесь многое зависит от пробивной способности снаряда, то есть формы, и от его шероховатости.

Заключение.

Целью нашей работы являлось изучение устройства электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса и определить ее КПД.

Цель мы достигли : изготовили экспериментальную действующую модель электромагнитного ускорителя масс (пушки Гаусса), упростив схемы, имеющиеся в интернете, и адаптировав модель к сети переменного тока стандартных характеристик.

Определили КПД полученной модели. КПД оказался равным примерно 1%. КПД имеет малое значение, что подтверждает все, что мы узнали из литературы.

Проведя исследование, мы сделали для себя следующие выводы:

1. Собрать работающий прототип электромагнитного ускорителя масс в домашних условиях вполне реально.

2. Использование электромагнитного ускорения масс имеет большие перспективы в будущем.

3. Электромагнитное оружие может стать станет достойной заменой крупнокалиберному огнестрельному орудию, Особенно это будет возможным при создании компактных источников энергии.

Список литературы:

1. Википедия http://ru. wikipedia. org

2. Основные виды ЭМО (2010) http://www. gauss2k. narod. ru/index. htm

3. Новое электромагнитное оружие 2010

http://vpk. name/news/40378_novoe_elektromagnitnoe_oruzhie_vyizyivaet_vseobshii_interes. html

4. Все о Пушке Гаусса
http://catarmorgauss. ucoz. ru/forum/6-38-1

5. www. popmech. ru

6. gauss2k. narod. ru

7. www. physics. ru

8. www. sfiz. ru

12. Физика: учебник для 10 класса с углубленным изучением физики/ , и др.; под ред. , . – М.: Просвещение, 2009.

13. Физика: учебник для 11 класса с углубленным изучением физики/ , и др.; под ред. , . – М.: Просвещение, 2010.

Гаврилкин Тимофей Сергеевич

В настоящее время существует множество видов электромагнитных ускорителей масс. Наиболее известные – «Рельсотрон» и «Пушка Гаусса».

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Электромагнитные ускорители масс. Пушка Гаусса Выполнил ученик 10 «М» класса МБОУ Лицей №185 Гаврилкин Тимофей Руководитель: Тимченко Ирина Александровна учитель физики МБОУ Лицей № 185

Цель работы: Научиться использовать электромагнитные силы; экспериментально показать их существование, собрав простейший ускоритель масс - пушку Гаусса.

Задачи: 1) Рассмотреть устройство по чертежам и макетам; 2) Изучить строение и принцип действия электромагнитного ускорителя масс; 3) Создать действующую модель

Актуальность работы Принцип электромагнитного ускорения масс можно использовать на практике в различных областях

Пример электромагнитного ускорителя масс

Карл Фридрих Гаусс (30.04.1777 – 23.02.1855)

Принцип работы пушки

Пример многоступенчатой пушки

Катушка индуктивности

Схема пушки Гаусса

Внешний вид модели

Эксперимент Ц ель: рассчитать приблизительную скорость вылета пуль разного типа. Оборудование: пушка Гаусса; 2 пули массами 1г и 3г, изготовленные из иглы и гвоздя; 2 тела – губка массой 3г и скотч массой 60г; линейка; цифровая видеокамера

Ход работы: Установить тело на расстоянии 3-5 см от конца ствола; Совместить отметку 0 на линейке с гранью тела; Выстрелить снарядом в тело; Зафиксировать выстрел и движение видеокамерой; Измерить расстояние, пройденное телом; Проделать опыт с каждым снарядом и телом; При помощи компьютера и видеокамеры определить время движения; Занести результаты в таблицу.

Таблица измерений и результатов выстрел масса пули кг масса тела кг время с расстояние м скорость общая м/с скорость пули м/с 1 0,001 губка 0,003 0,01 0,006 1,2 4,8 2 0,001 скотч 0,06 0,03 0,002 0,13 8,13 3 0,003 губка 0,003 0,04 0,22 11 22 4 0,003 скотч 0,06 0,07 0,04 1,14 24

КПД установки КПД= (А п / А з)*100 % КПД пушки составляет 5%

Спасибо за внимание!

Предварительный просмотр:

Департамент образования

мэрии города Новосибирска

муниципальное бюджетное общеобразовательное учреждение города Новосибирска «Лицей №185»

Октябрьский район

Электромагнитные ускорители масс. Пушка Гаусса.

Работу выполнил

Ученик 10 М класса

Гаврилкин Тимофей Сергеевич

Руководитель

Тимченко Ирина Александровна,

Учитель физики

Высшей квалификационной категории

Новосибирск, 2016

Введение

2.1. Теоретическая часть. Электромагнитный ускоритель масс.

2.2. Практическая часть. Создание функционирующей модели ускорителя масс в домашних условиях.

Заключение

Литература

Введение

В настоящее время существует множество видов электромагнитных ускорителей масс. Наиболее известные – «Рельсотрон» и «Пушка Гаусса».

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз и неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела (если скорость достаточно обтекаемого снаряда не превышает скорости звука) в том числе без смены ствола и боеприпаса, относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей), теоретически, больша́я надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства.

Однако, несмотря на кажущуюся простоту пушки Гаусса и её преимущества, использование её в качестве оружия сопряжено с серьёзными трудностями.

Первая трудность - низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 27%.

Вторая трудность - большой расход энергии (из-за низкого КПД) и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею). Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Для своей работы я выбрал пушку Гаусса, потому что простая схема сборки установки и доступность её элементов.

Цель моей работы: научиться использовать электромагнитные силы; экспериментально показать их существование, собрав простейший ускоритель масс - пушку Гаусса.

Задачи, которые я поставил перед собой:

1. Рассмотреть устройство пушки Гаусса по чертежам и макетам.

2. Изучить устройство и принцип действия электромагнитного ускорителя масс.

3. Создать действующую модель.

Актуальность работы заключается в том, что принцип электромагнитного ускорения масс можно использовать на практике, например, при создании строительных инструментов. Электромагнитное ускорение является перспективным направлением в развитии науки.

Сейчас такие ускорители существуют в основном как новейшие виды вооружения (хотя практически не применяются) и как установки, используемые учеными для практического испытания различных материалов, таких как прочные сплавы для изготовления космических аппаратов, элементов танковой брони и атомной энергетики.

Теоретическая часть

Пушка названа по имени немецкого ученого Карла Гаусса, заложившего основы математической теории электромагнетизма. Его именем названа система единиц – Гауссова система единиц. Однако сам Гаусс имеет малое отношение непосредственно к ускорителю.

Идеи подобных ускорителей масс были представлены Ю.В.Кондратюком для выведения с поверхности Земли различных космических контейнеров и аппаратов. В основном такие ускорители рассматривались как «Оружие будущего» или «Сверхмощные виды транспорта». Однако работающих прототипов еще не существует, либо их разработки держатся в особом секрете.

Строение пушки Гаусса.

1. Основные элементы:

  • Мощный и достаточно энергоемкий накопитель электрического потенциала, способный в кратчайшее время его разрядить (конденсатор).
  • Катушка (цилиндрическая обмотка), служащая непосредственно ускорителем.

2. Принцип действия.

В цилиндрической обмотке (соленоиде) при протекании через неё электрического тока возникает магнитное поле. Это магнитное поле начинает втягивать внутрь соленоида снаряд из ферромагнетика, который от этого начинает разгоняться. Если в момент, когда снаряд окажется в середине обмотки, ток в этой обмотке отключить, то втягивающее магнитное поле исчезнет и снаряд, набравший скорость, свободно вылетит через другой конец обмотки.

Чем сильнее магнитное поле и чем быстрее оно отключается – тем быстрее вылетает снаряд. Но одноступенчатые системы (т.е. состоящие из одной катушки) обладают достаточно низким КПД. Это объясняется рядом факторов:

  • Инерционность самого соленоида, самоиндукция которого вначале препятствует втягиванию снаряда, а затем после выключения тока, тормозит его движение.
  • Инерционностью снаряда, обладающего значительной массой.
  • Силой трения, которая вначале, при разгоне снаряда весьма велика.

Для достижения ощутимых результатов требуется делать обмотки соленоидов с чрезвычайно большой удельной мощностью, что весьма нежелательно, ибо приводит в лучшем случае к перегреву, а в худшем к их перегоранию.

Разработка и создание многоступенчатых систем поможет решить все эти проблемы. Благодаря постепенному, а не импульсному ускорению снаряда удельную мощность обмоток можно снизить и, следовательно, уменьшить их нагрев и продлить срок службы.

В многоступенчатых системах достигается более высокий КПД, что связано с постепенным снижением трения и с более высоким коэффициентом передачи энергии на последующих ступенях. Это означает, что чем больше начальная скорость снаряда, тем большее количество энергии он может взять от соленоида. Иными словами, если в первой ступени снаряду передается 1 – 3 % энергии магнитного поля, то в последней практически вся энергия поля переходит в кинетическую энергию ускоряемого снаряда.

КПД простейших многоступенчатых систем больше, чем одноступенчатых и может достигать 50 %. Но и это не предел! Многоступенчатые системы позволяют добиться более полного использования энергии импульсных источников тока, что даёт возможность в перспективе увеличить КПД системы до 90% и более.

Практическая часть

Для сборки пушки я изготовил самостоятельно катушку индуктивности с количеством витков 350 (5 слоев по 70 витков каждый). Использовал конденсатор емкостью 1000 мкФ, тиристор Т-122-25-10, и батарейку 3В. Для зарядки конденсатора дополнительно собрал цепь, питающуюся от сети, состоящую из лампы накаливания 60 Вт и выпрямительного диода.

Собрал модель по следующей схеме:

Технические характеристики пушки.

1. Снаряды: гвоздь 3г, игла 1г.

2. Катушка индуктивности: 350 витков, 7 слоев по 50 в каждом;

3. Ёмкость конденсатора: 1000 мкФ.

Внешний вид модели представлен на фотографиях:

Эксперимент

Оборудование и материалы:

Пушка Гаусса; 2 пули массами 1г и 3г, изготовленные из иглы и гвоздя;

2 тела – губка массой 3г и скотч массой 60г; линейка; цифровая видеокамера.

Ход работы:

1. Установить тело на расстоянии 3-5 см от конца ствола.

2. Совместить отметку 0 на линейке с гранью тела.

3. Выстрелить снарядом в тело.

4. Зафиксировать выстрел и движение видеокамерой.

5. Измерить расстояние, пройденное телом.

6. Проделать опыт с каждым снарядом и телом.

7. При помощи компьютера и видеокамеры определить время движения.

8. Занести результаты в таблицу.

9. Вычислить КПД установки.

Схема опыта:

Пушка Гаусса Пуля, m п Тело, m т

Вычисления:

1. Согласно формуле S=t(V+V об )/ 2 можно вычислить скорость тела.

Так как начальная скорость тела V =0, то данная формула преобразуется в формулу, имеющую вид V об =2S/t

2. По закону сохранения импульса: m п* v п + m т * v т =(m п + m т )v об

Отсюда V п =(v об * m об )/m п , где m об = m п + m т

Таблица измерений и результатов:

выстрела

масса пули

m п , кг

масса тела m т , кг

время t , с

расстояние

S , м

скорость общая

v об , м/с

скорость пули V п , м/с

0,001

губка

0,003

0,01

0,006

1,20

4,80

0,001

губка

0,003

0,01

0,008

1,60

6,40

0,001

скотч

0,060

0,02

0,001

0,10

6,10

0,001

скотч

0,060

0,02

0,002

0,13

8,13

0,003

губка

0,003

0,04

0,22

11,0

22,00

0,003

губка

0,003

0,04

0,22

11,0

22,00

0,003

скотч

0,060

0,07

0,04

1,14

24,00

0,003

скотч

0,060

0,06

0,05

1,17

24,57

Вывод: заметная разница в скоростях одного снаряда объясняется присутствием силы трения (скольжения для губки, и силы трения качения – для скотча), погрешностью в вычислениях, неточностью измерений и иными факторами сопротивления. Скорость пули зависит от её размера, массы и материала.

Расчёт КПД установки

КПД=(А п / А з ) * 100%

Полезная работа установки – разгон пули. Можно вычислить кинетическую энергию пули, приобретаемую в результате работы пушки по формуле: А п =Е к =(mv 2 )/2

В качестве затраченной работы можно использовать запасаемую конденсатором энергию, которая тратится на работу пушки:

А з = Е=(С * U 2 )/2

С – ёмкость конденсатора 1000 мКФ

U – напряжение 250 В

КПД= (0,003 * 22 2 )/(0,001 * 250 2 ) * 100%

КПД = 5%

Вывод: КПД ускорителя тем выше, чем лучше согласованы параметры соленоида с параметрами конденсатора и параметрами пули, т.е. при выстреле к моменту подлета пули к середине обмотки ток в катушке уже близко к нулю и магнитное поле отсутствует, не препятствуя снаряду вылетать из соленоида. Однако на практике получить такое удается редко – малейшее отклонение от теоретического идеала резко снижает КПД. Остальная энергия конденсатора теряется на активном сопротивлении проводов.

Заключение

Мой первый образец пушки Гаусса - простейший одноступенчатый ускоритель, служащий, скорее наглядной моделью для понимания принципа работы настоящего ускорителя.

В будущем планирую собрать более мощный многоступенчатый ускоритель, улучшив характеристики и добавив возможность заряжать его от аккумулятора. Так же более подробно изучить строение и принцип работы «Рельсотрона», после чего попытаться собрать и его.

Список литературы

1. Физика: учебник для 10 класса с углубленным изучением физики/ А. Т. Глазунов, О. Ф. Кабардин, А. Н. Малинин и др.; под ред. А. А. Пинского, О. Ф. Кабардина. – М.: Просвещение, 2009.

2. Физика: учебник для 11 класса с углубленным изучением физики/ А. Т. Глазунов, О. Ф. Кабардин, А. Н. Малинин и др.; под ред. А. А. Пинского, О. Ф. Кабардина. – М.: Просвещение, 2010.

3. С. А. Тихомирова, Б. М. Яворский. Физика. 10 класс : учебник для общеобразовательных учреждений (базовый и углубленный уровень). – М.: Мнемозина, 2010.

4. С. А. Тихомирова, Б. М. Яворский. Физика. 11 класс : учебник для общеобразовательных учреждений (базовый и углубленный уровень). – М.: Мнемозина, 2009.

5. Основные виды ЭМО. -электронный ресурс: http://www. gauss2k. narod. ru/index. Htm

6. Пушка Гаусса.- электронный ресурс: http://ru. wikipedia. org

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1.Введение.

Электромагнитная пушка Гаусса известна всем любителям компьютерных игр и фантастики. Назвали ее в честь немецкого физика Карла Гаусса, исследовавшего принципы электромагнетизма. Но так ли уж далеко смертельное фантастическое оружие от реальности?

Из курса школьной физики мы узнали, что электрический ток, проходя по проводникам, создает вокруг них магнитное поле. Чем больше ток, тем сильнее магнитное поле. Наибольший практический интерес представляет собой магнитное поле катушки с током, иначе говоря, катушки индуктивности (соленоид). Если катушку с током подвесить на тонких проводниках, то она установится в то же положение, в котором находится стрелка компаса. Значит, катушка индуктивности имеет два полюса - северный и южный.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол из диэлектрика. В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, симметричные полюсам катушки, из-за чего после прохода центра соленоида снаряд может притягиваться в обратном направлении и тормозиться.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы. Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз, неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела, в том числе без смены ствола и боеприпас. Относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей). Теоретически, большая надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства. Также возможно применение пушек Гаусса для запуска легких спутников на орбиту.

Однако, несмотря на кажущуюся простоту, использование её в качестве оружия сопряжено с серьёзными трудностями:

Низкий КПД - около 10 %. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 30%. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию. Вторая трудность - большой расход энергии и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания. Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Высокое время перезаряда между выстрелами, то есть низкая скорострельность. Боязнь влаги, ведь намокнув, она поразит током самого стрелка.

Но главная проблема это мощные источники питания пушки, которые на данный момент являются громоздкими, что влияет на мобильность

Таким образом, на сегодняшний день пушка Гаусса для орудий с малой поражающей способностью (автоматы, пулеметы и т. д.) не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового вооружения. Перспективы появляются при использовании ее как крупнокалиберного орудия военно-морского. Так, например, в 2016 году ВМС США приступят к испытаниям на воде рельсотрона. Рельсотрон, или рельсовая пушка — орудие, в котором снаряд выбрасывается не с помощью взрывчатого вещества, а с помощью очень мощного импульса тока. Снаряд располагается между двумя параллельными электродами — рельсами. Снаряд приобретает ускорение за счёт силы Лоренца, которая возникает при замыкании цепи. С помощью рельсотрона можно разогнать снаряд до гораздо больших скоростей, чем с помощью порохового заряда.

Однако, принцип электромагнитного ускорения масс можно с успехом использовать на практике, например, при создании строительных инструментов - актуальное и современное направление прикладной физики. Электромагнитные устройства, преобразующие энергию поля в энергию движения тела, в силу разных причин ещё не нашли широкого применения на практике, поэтому имеет смысл говорить о новизне нашей работы.

1.1Актуальность проекта : данный проект является междисциплинарным и охватывает большое количество материала, изучив который возникла идея создать самим действующую модель пушки Гаусса.

1.2 Цель работы : изучить устройство электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса и определить скорость полета снаряда и его импульс.

Основные задачи :

1. Рассмотреть устройство по чертежам и макетам.

2. Изучить устройство и принцип действия электромагнитного ускорителя масс.

3. Создать действующую модель.

4. Определить скорость полета снаряда и его импульс.

Практическая часть работы :

Создание функционирующей модели ускорителя масс в условиях дома.

1.3Гипотеза : возможно ли создание простейшей функционирующей модели Пушки Гаусса в условиях дома?

2. Кратко о самом Гауссе.

Карл Фридрих Гаусс (1777-1855) — немецкий математик, астроном, геодезист и физик. Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры (доказательство основной теоремы алгебры), теории чисел (квадратичные вычеты), дифференциальной геометрии (внутренняя геометрия поверхностей), математической физики (принцип Гаусса), теории электричества и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии.

Карл Гаусс родился 30 апреля 1777, Брауншвейг, ныне Германия. Скончался 23февраля 1855, Геттинген, Ганноверское королевство, ныне Германия. Еще при жизни он был удостоен почетного титула «принц математиков». Он был единственным сыном бедных родителей. Школьные учителя были так поражены его математическими и лингвистическими способностями, что обратились к герцогу Брауншвейгскому с просьбой о поддержке, и герцог дал деньги на продолжение обучения в школе и в Геттингенском университете (в 1795-98). Степень доктора Гаусс получил в 1799 в университете Хельмштедта

Открытия в области физики

В 1830-1840 годы Гаусс много внимания уделяет проблемам физики. В 1833 в тесном сотрудничестве с Вильгельмом Вебером, Гаусс строит первый в Германии электромагнитный телеграф. В 1839 выходит сочинение Гаусса «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния», в которой излагает. основные положения теории потенциала и доказывает знаменитую теорему Гаусса—Остроградского. Работа «Диоптрические исследования» (1840) Гаусса посвящена теории построения изображений в сложных оптических системах

3. Формулы, связанные с принципом действия пушки.

Кинетическая энергия снаряда

где: — масса снаряда, — его скорость

Энергия, запасаемая в конденсаторе

где: — напряжение конденсатора, — ёмкость конденсатора

Время разряда конденсаторов

Это время, за которое конденсатор полностью разряжается:

Время работы катушки индуктивности

Это время, за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0.

где: — индуктивность, — ёмкость

Одним из основных элементом пушки Гаусса это электрический конденсатор. Конденсаторы бывают полярные и неполярные - практически все конденсаторы большой емкости, используемые в магнитных ускорителях, электролитические и являются полярными. Т. е. очень важно правильное его подключение - положительный заряд подаем к выводу “+”, а отрицательный к “-”. Алюминиевый корпус электролитического конденсатора, кстати, так же является выводом “-”. Зная емкость конденсатора и его максимальное напряжение можно найти энергию, которую может накапливать этот конденсатор

4. Практическая часть

Наша катушка индуктивностью С имеет 30 витков (3 слоя по 10 витков, каждый). Два конденсатора суммарной емкостью 450 мкФ. Собрали модель по следующей схеме: см. Приложение 1.

Определение скорости полета снаряда, вылетающего из «ствола» нашей модели, мы осуществили опытным путём с помощью баллистического маятника. В основе опыта лежат законы сохранения импульса и энергии.Поскольку скорость полёта пули достигает значительной величины, прямое измерение скорости, то есть определение времени, за которое пуля проходит известное нам расстояние, требует наличия специальной аппаратуры. Мы измеряли скорость пули косвенным методом, используя неупругое соударение - соударение, в результате которого столкнувшиеся тела соединяются вместе и продолжают движение как одно целое. Летящий снаряд испытывает неупругий удар со свободным телом большей массы. После удара тело начинает двигаться со скоростью во столько же раз меньше скорости пули, во сколько масса пули меньше массы тела.

Неупругий удар характеризуется тем, что потенциальная энергия упругой деформации не возникает, кинетическая энергия тел полностью или частично превращается во внутреннюю энергию. После удара столкнувшиеся тела либо движутся с одинаковыми скоростями, либо покоятся. При абсолютно неупругом ударе выполняется закон сохранения импульса:

где - скорость тел после взаимодействия.

Закон сохранения импульса (количества движения) применяется, если взаимодействующие тела образуют изолированную механическую систему, то есть такую систему, на которую не действуют внешние силы, либо внешние силы, действующие на каждое из тел, уравновешивают друг друга, либо проекции внешних сил на некоторое направление равны нулю.

При неупругом ударе кинетическая энергии не сохраняется, поскольку часть кинетической энергии снаряда преобразуется во внутреннюю соударяющихся тел но закон сохранения полной механической энергии выполняется и можно записать:

где - приращение внутренней энергии взаимодействующих тел.

4.1 Методика исследования.

Баллистический маятник, который использовался нами, представляет собой деревянный брусок со слоем пластилина. Мишень М подвешена на двух длинных практически нерастяжимых нитях. На мишени укреплена лазерная указка, луч которой при отклонении маятника (после удара снаряда) перемещается вдоль горизонтальной шкалы (рис. 1).

На некотором расстоянии от маятника располагается пушка Гаусса. После удара снаряд массой m застревает в мишени M . Система «снаряд-мишень» изолирована по горизонтальному направлению. Так как длина l нитей много больше линейных размеров мишени, то система «снаряд-мишень» может рассматриваться как математический маятник. После попадания снаряда центр массы системы «снаряд-мишень» поднимается на высоту h .

На основании закона сохранения импульса в проекции на ось x (см. рис. 1) имеем:

Где - скорость снаряда, - скорость снаряда и маятника.

Пренебрегая трением в подвес маятника и силой сопротивления воздуха, на основе закона сохранения энергии можно записать:

где - высота подъёма системы после удара.

Величина h может быть определена из измерений отклонения маятника от положения равновесия после попадания пули в мишень (рис. 2):

где a - угол отклонения маятника от положения равновесия.

Для малых углов отклонения:

где - горизонтальное смещение маятника.

Подставляя последнюю формулу к проекции закона сохранения импульса на ось, находим:

4.2 Результаты измерения.

Массу m снаряда мы определили с помощью взвешивания на механических лабораторных весах:

m = 3 г. = 0, 003 кг.

Масса M мишени со слоем пластилина и лазерной указкой приведены в описании лабораторной установки.

M = 297 г. = 0, 297 кг.

Длины нитей подвеса должны быть одинаковы, а ось вращения строго горизонтальна.

В этой части мы измерили с помощью линейки длины нитей.

l = 147 см = 1,47 м.

После выстрела заряженной снарядом пушки Гаусса факт попадания пули в центр маятника определяется визуально.

Для проведения дальнейших вычислений отмечаем на шкале положения n 0 светового указателя в состоянии равновесия мишени и положения n светового указателя при максимальном отклонении маятника и находим смещение S = (n - n 0) маятника.

Измерения проводились 5 раз. При этом повторные выстрелы осуществлялись только по неподвижной мишени. Результаты измерений приведены ниже:

S ср = = 14 мм = 0, 014 м,

и вычислена скорость ʋ 0 снаряда по формуле.

U 0 = =12,96 км/ч

Определение погрешностей измерений. Определение производится по формуле: , где l₀ - среднее значение длин, Δ l - среднее значение погрешности. Мы уже определили среднее значение длин в предыдущих этапах, поэтому нам остаётся определить среднее значение погрешности. Определять мы его будем по формуле:Δ l = Теперь можем приписать значение длины с погрешностью:Нахождение импульса снаряда. Определение импульса производится по формуле: , где - скорость снаряда.Подставляем значения:

5.Заключение.

Целью нашей работы являлось изучение устройства электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение, а также изготовление действующей модели Пушки Гаусса и определение скорости полета снаряда. Изложенные нами результаты показывают, что нами была изготовлена экспериментальная действующая модель электромагнитного ускорителя масс (пушки Гаусса). При этом нами были упрощены схемы, имеющиеся в интернете и модель была адаптирована к работе в стандартной промышленной сети переменного тока. Проведённая нами работа позволяет сделать следующие выводы:

1. Собрать работающий прототип электромагнитного ускорителя масс в домашних условиях вполне реально.

2. Использование электромагнитного ускорения масс имеет большие перспективы в будущем.

3. Электромагнитное оружие может стать достойной заменой крупнокалиберному огнестрельному орудию, Особенно это будет возможным при создании компактных источников энергии.

6. Информационные ресурсы :

Википедия http://ru.wikipedia.org

Новое электромагнитное оружие 2010 http://vpk. name/news/40378_novoe_elektromagnitnoe_oruzhie_vyizyivaet_vseobshii_interes. html

Как-то на просторах интернета я нашел статью про Гаусс пушку и задумался над тем, что неплохо было бы заиметь себе одну (или даже две). В процессе поиска наткнулся я на сайт gauss2k и по простейшей схеме собрал супер-крутую-мега-гаусс-пушку.

Вот она:

И немного пострелял:

И взяла меня тут грусть-печаль сильная о том, что не супер-крутая пушка у меня, а так – пукалка, каких много. Сел я и начал думать, как же мне кпд повысить. Долго думал. Год. Прочитал весь гаусс2к и пол евойного форума. Придумал.

Оказывается, есть программа, написанная учеными заморскими, да нашими умельцами под гаусс пушечку допиленная, и зовется она не иначе как FEMM .

Скачал я с форума .lua скрипт да программу заморскую 4.2 версии и приготовился удариться в расчеты научные. Но не тут-то было, не захотела программа заморская запускать скрипт русский, ибо скрипт под 4.0 версию сделан был. И открыл я инструкцию (у них мануалом она зовется) на языке буржуинском и воскурил ее полностью. Открылась мне истина великая о том, что в скрипт, окаянный, нужно вначале добавить строку хитрую.

Вот она: setcompatibilitymode(1) -- включаем режим совместимости с версией femm 4.2
И засел я за расчеты долгие, загудела машина моя счетная, и получил описание я ученое:

Описание

Емкость конденсатора, микроФарад= 680
Напряжение на конденсаторе, Вольт = 200
Сопротивление общее, Ом = 1.800147899376892
Внешнее сопротивление, Ом = 0.5558823529411765
Сопротивление катушки, Oм = 1.244265546435716
Количество витков в катушке = 502.1193771626296
Диаметр обмоточного провода катушки, милиметр = 0.64
Длина провода в катушке, метр = 22.87309092387464
Длина катушки, милиметр = 26
Внешний диаметр катушки, милиметр = 24
Индуктивность катушки с пулей в начальном положении, микроГенри= 1044.92294174225
Внешний диаметр ствола, милиметр = 5
Масса пули, грамм = 2.450442269800038
Длина пули, милиметр = 25
Диаметр пули, милиметр = 4
Расстояние, на которое в начальный момент вдвинута пуля в катушку, милиметр = 0
Материал из которго сделана пуля = № 154 Экпериментально подобранный материал (простое железо)
Время процесса (микросек)= 4800
Приращение времени, микросек=100
Энергия пули Дж = 0.2765589667129519
Энергия конденсатора Дж = 13.6
КПД гауса(%)= 2.033521814065823
Начальная скорость пули, м/с = 0
Скорость пули на выходе из катушки, м/с= 15.02403657199634
Максимальная скорость, которая была достигнута, м/с = 15.55034094445013


И тут я сел реализовывать сие колдунство в реальность.

Взял трубку от антенны (одна из секций D = 5mm) и сделал в ней пропил (болгаркой), ибо трубка это замкнутый виток в котором будут наводиться токи окаянные, вихревыми зовущиеся, и будут эту самую трубку нагревать, снижая КПД, который и так невысок.

Вот что получилось: прорезь ~ 30 мм

Начал мотать катушку. Для этого вырезал из фольгированного стеклотекстолита 2 квадрата (30х30 мм) да с отверстием в центре (D = 5мм) и дорожки на нем вытравил хитрые, чтобы к трубке припаять (она то хоть и блестит как железка, но на самом деле латунная).

Со всем этим добром сел мотать катушку:

Намотал. И по все той же схеме собрал сей хитрый девайс.

Вот как это выглядит:

Тиристор и микрик были из старых запасов, а вот конденсатор я достал из компьютерного БП (там их два). Из того же БП впоследствии использовались еще диодный мост и дроссель переделанный в повышающий трансформатор, ибо от розетки заряжаться опасно, да и нет ее в чистом поле, а потому нужен преобразователь построением которого я и занялся. Для этого взял ранее собранный генератор на NE555:


И подключил его к дросселю:

у которого было 2 обмотки по 54 витка 0,8 проводом. Питал я все это от АКБ на 6 вольт. И вот ведь колдунство какое – вместо 6 вольт на выходе (обмотки то одинаковые), я получил целых 74 вольта. Выкурив еще пачку мануалов по трансформаторам я узнал:

- Как известно, ток во вторичной обмотке тем больше, чем быстрее изменяется ток в первичной обмотке, т.е. пропорционален производной от напряжения в первичной обмотке. Если производная от синусоиды тоже является синусоидой с такой же амплитудой (в трансформаторе величина напряжения умножается на коэффициент трансформации N), то с прямоугольными импульсами дело обстоит иначе. На переднем и заднем фронте трапециевидного импульса скорость изменения напряжения очень высока и производная в этом месте тоже имеет большое значение, отсюда и возникает высокое напряжение.

Gauss2k.narod.ru “Портативное устройство для зарядки конденсаторов.” Автор ADF

Немного подумав, я пришел к выводу: раз выходное напряжение у меня 74 вольта, а надо 200 то – 200/74 = в 2,7 раза нужно увеличить количество витков. Итого 54*2,7 = 146 витков. Перемотал одну из обмоток более тонким проводом (0,45). Количество витков увеличил до 200 (про запас). Поигрался с частотой преобразователя и получил вожделенные 200 вольт (по факту 215).

Вот как это выглядит:

Некрасиво, но это временный вариант потом будет переделываться.

Собрав все это добро, я немного пострелял:

Постреляв, решил измерить, что за ТТХ у моей пушки. Начал с измерения скорости.

Посидев вечерком с бумагой и ручкой, вывел формулу, которая позволяет по траектории полета вычислить скорость:

С помощью сей хитрой формулы я получил:

Расстояние до цели, x = 2,14 м
отклонение по вертикали, y (среднее арифметическое 10 выстрелов) = 0,072 м
Итого:

Я сначала не поверил, но впоследствии собранные пробивные датчики, подключенные к звуковой карте, показали скорость 17,31 м/с

Мерить массу гвоздика я поленился (да и нечем) поэтому взял массу, которую насчитал мне ФЕММ (2,45 грамма). Нашел КПД.

Энергия запасаемая в конденсаторе = (680 * 10^-6 * 200^2)/2 = 13,6 Дж
Энергия пули = (2,45 * 10^-3 * 17,3^2)/2 = 0,367 Дж
КПД = 0,367/13,6*100% = 2,7%

Вот в принципе и все что связано с одноступенчатым ускорителем. Вот как он выглядит: