Приближенные методы исследования нелинейных систем. Методы исследования нелинейных систем

Система считается нелинейной, если её порядок >2 (n>2).

Исследование линейных систем высокого порядка связанно с преодолением значительных математических трудностей, так как несуществует общих методов решения нелинейных уравнений. При анализе движения нелинейных систем применяют методы численного и графического интегрирования, которые позволяют получать только одно частное решение.

Методы исследования разделяются на две группы. Первая группа – это методы основанные на поиске точных решений нелинейных дифференциальных уравнений. Вторая группа – это приближенные методы.

Разработка точных методов важна как с точки зрения получения непосредственных результатов, так и для исследования различных особых режимов и форм динамических процессов нелинейных систем, которые не могут быть выявлены и проанализированы приближенными методами. К точным методам относятся:

1. Прямой метод Ляпунова

2. Методы фазовой плоскости

3. Метод припасовывания

4. Метод точечных преобразований

5. Метод сечений пространства параметров

6. Частотный метод определения абсолютной устойчивости

Для решений многих теоретических и практических задач применяется дискретная и аналоговая вычислительная техника, позволяющая использовать методы математического моделирования в сочетании с полунатурным и натурным моделированием. В этом случае вычислительная техника стыкуется с реальными элементами систем управления, со всеми присущими им нелинейностями.

К приближенным относятся аналитические и графо-аналитические методы, позволяющие заменить нелинейную систему эквивалентной линейной моделью, с последующим использованием для ее иследования методов линейной теории динамических систем.

Существует две группы приближенных методов.

Первая группа основывается на предположение о близости исследуемой нелинейной системы по ее свойствам к линейной. Это методы малого параметра, когда движение системы описывается с помощью степенных рядов относительно некоторого малого параметра, который имеется в уровнениях системы, или который вводится в эти уровнения искусственно.

Вторая группа методов направлены на исследования собственных периодических колебаний системы. Она основывается на предположении близости искомых колебаний системы к гармоническим. Это методы гармонического баланса или гармонической линеализации. При их использовании производится условная замена нелинейного элемента, находящегося под действием гармонического входного сигнала, эквивалентным линейным элементам. Аналитическое обоснование гармонической линеализации основывается на принципе равенства частотных, аплитудных и фазовых выходных переменных, эквивалентного линейного элемента и первой гармоники выходной переменной реального нелинейного элемента.

Наибольший эффект дает разумное сочетание приближенных и точных методов.

  • Метод гармонической линеаризации в проектировании нелинейных систем автоматического управления. [Djv-10.7M ] Под редакцией Ю.И. Топчеева. Коллектив авторов.
    (Москва: Издательство «Машиностроение», 1970. - Серия «Нелинейные системы автоматического управления»)
    Скан: AAW, обработка, формат Djv: Ilya Sytnikov, 2014
    • КРАТКОЕ ОГЛАВЛЕНИЕ:
      Предисловие (5).
      Глава I. Теоретические основы метода гармонической линеаризации (Е.П. Попов) (13).
      Глава II. Новая форма гармонической линеаризации для систем управления с нелинейными гистерезисными характеристиками (Е.И. Хлыпало) (58).
      Глава III. Метод гармонической линеаризации, базирующийся на оценке чувствительности периодического решения к высшим гармоникам и малым параметрам (А.А. Вавилов) (88).
      Глава IV. Определение амплитудных и фазовых частотных характеристик нелинейных систем (Ю.И. Топчеев) (117).
      Глава V. Приближенные частотные методы анализа качества нелинейных систем управления (Ю.И. Топчеев) (171).
      Глава VI. Повышение точности метода гармонической линеаризации (В.В. Павлов) (186).
      Глава VII. Применение метода гармонической линеаризации к дискретным нелинейным системам управления (С.М. Федоров) (219).
      Глава VIII. Применение асимптотического метода Н.М. Крылова и Н.Н. Боголюбова при анализе нелинейных систем управления (А.Д. Максимов) (236).
      Глава IX. Применение гармонической линеаризации к нелинейным самонастраивающимся системам управления (Ю.М. Козлов, С.И. Марков) (276).
      Глава X. Применение метода гармонической линеаризации к нелинейным автоматическим системам с конечными автоматами (М.В. Старикова) (306).
      Глава XI. Приближенный метод исследования колебательных процессов и скользящих режимов в автоматических системах с переменной структурой (М.В. Старикова) (390).
      Глава XII. Приближенное исследование импульсно-релейной системы управления (М.В. Старикова) (419).
      Глава XIII. Определение колебательных процессов в сложных нелинейных системах при различных начальных отклонениях (М.В. Старикова) (419).
      Глава XIV. Применение метода гармонической линеаризации к системам с периодическими нелинейностями (Л.И. Семенко) (444).
      Глава XV. Применение метода гармонической линеаризации к системам с двумя нелинейностями (В.М. Хлямов) (467).
      Глава XVI. Амплитудно-фазовые характеристики релейных механизмов с двигателями постоянного и переменного тока, полученные по методу гармонической линеаризации (В.В. Цветков) (485).
      Приложения (518).
      Литература (550).
      Алфавитный указатель (565).

Аннотация издательства: Данная книга входит в состав серии монографий, посвященных нелинейным системам автоматического управления.
В ней систематически, в достаточно полном объеме, изложена теория нелинейных систем автоматического управления, базирующаяся на методе гармонической линеаризации. Главное внимание уделено теоретическим основам метода гармонической линеаризации и его практическим применениям к непрерывным, дискретным, самонастраивающимся системам, а также системам с конечными автоматами и перестраиваемой структурой. Рассмотрены способы повышения точности метода гармонической линеаризации путем учета влияния высших гармоник. Предлагаемые способы иллюстрируются многочисленными примерами.
Книга предназначена для научных работников, инженеров, преподавателей и аспирантов высших учебных заведений, занимающихся вопросами автоматического управления.

Существует точные и приближенные методы исследования нелинейных систем к числу точных методов относятся методы фазовых траекторий, точечных преобразований, частотный метод Попова, метод сечений пространства параметров, метод припасовывания, к приближенным методам относится метод гармонической линеаризации.

Основы метода фазовых траекторий

Метод фазовых траекторий заключается в том, что поведение исследуемой нелинейной системы рассматривается и описывается не во временной области (в виде уравнений процессов в системе), а в фазовом пространстве системы (в виде фазовых траекторий).

Состояние нелинейной системы автоматического управления характеризуется с использованием фазовых координат системы

задающих вектор состояния системы в фазовом пространстве системы

Y (y1, y2, y3,...yn).

При введении в рассмотрение фазовых координат нелинейное дифференциальное уравнение порядка n для свободного процесса в нелинейной системе

преобразуется к системе из n дифференциальных уравнений первого порядка

В ходе процесса в системе фазовые координаты yi изменяются и вектор состояния системы Y описывает годограф в n– мерном фазовом пространстве системы (рис. 56). Годограф вектора состояния (траектория движения изображающей точки M, соответствующей концу вектора) есть фазовая траектория системы. Вид фазовой траектории однозначно связан с характером процесса в системе. Поэтому о свойствах нелинейной системы можно судить по ее фазовым траекториям.

Уравнение фазовой траектории может быть получено из приведенной выше системы уравнений первого порядка, связывающих фазовые координаты и учитывающих свойства системы, путем исключения времени. Фазовая траектория не отображает время процессов в системе.

Связь между фазовой траекторией y(x) и процессом x(t) поясняет рис. 57. Фазовая траектория построена в фазовых координатах 0XY, где x – выходная величина системы, y – скорость изменения выходной величины (первая производная x’). Переходный процесс x(t) построен в координатах x–t (выходная величина – время).

Метод точечных преобразований поверхностей позволяет определить всевозможные виды движения (свободные колебания) нелинейных динамических систем после любых начальных отклонений. Метод развит для анализа и синтеза движений систем, описываемых дифференциальными уравнениями невысокого порядка (второго, третьего), а также для системы с релейным управлением при учете запаздывания.

Замена производится по участкам, для каждого из которых нелинейная часть характеристики представляется линейным отрезком. Это дает возможность получить интегрируемое линейное дифференциальное уравнение, приближенно отражающее процесса в пределах данного участка. Для системы, описываемой дифференциальным уравнением второго порядка, ход расчета можно показать на фазовой плоскости, по осям которой откладываются исследуемая переменная л: и ее производная по времени у. Решение динамической задачи сводится к изучению точечного преобразования координатной полуоси в самое себя.


Рис.10.7. Метод точечных преобразований

Частотный метод румынского ученого В.М. Попова, предложенный в 1960 году, решает задачу об абсолютной устойчивости системы с одной однозначной нелинейностью, заданной предельным значением коэффициента передачи k нелинейного элемента. Если в системе управления имеется лишь одна однозначная нелинейность z=f(x), то, объединив вместе все остальные звенья системы в линейную часть, можно получить ее передаточную функцию Wлч(p), т.е. получить расчетную схему рис.7.1.
Ограничений на порядок линейной части не накладывается, т.е. линейная часть может быть любой. Очертание нелинейности может быть неизвестным, но она должна быть обязательно однозначной. Необходимо лишь знать, в пределах какого угла arctg k (рис. 7.2) она расположена, где к - предельный (наибольший) коэффициент передачи нелинейного элемента.

Рис.7.2. Характеристика нелинейного элемента

Графическая интерпретация критерия В.М.Попова связана с построением а.ф.х. видоизмененной частотной характеристики линейной части системы W*(jω), которая определяется следующим образом:
W*(jω) = Re WЛЧ(jω) + Im WЛЧ(jω),
где Re WЛЧ(jω) и Im WЛЧ(jω) - соответственно действительная и мнимая части линейной системы.
Критерий В.М.Попова может быть представлен или в алгебраической, или частотной форме, а также для случаев устойчивой и неустойчивой линейной части. Чаще используется частотная форма.
Формулировка критерия В.М.Попова в случае устойчивой линейной части: для установления абсолютной устойчивости нелинейной системы достаточно подобрать такую прямую на комплексной плоскости W*(jω), проходящую через точку (, j0), чтобы вся кривая W*(jω) лежала справа от этой прямой. Условия выполнения теоремы показаны на рис. 7.3.

Рис. 7.3. Графическая интерпретация критерия В.М. Попова для абсолютно устойчивой нелинейной системы

На рис. 7.3 приведен случай абсолютной устойчивости нелинейной системы при любой форме однозначной нелинейности. Таким образом, для определения абсолютной устойчивости нелинейной системы по методу В.М. Попова необходимо построить видоизмененную частотную характеристику линейной части системы W*(jω), определить предельное значение коэффициента передачи k нелинейного элемента из условия и через точку (-) на вещественной оси комплексной плоскости провести некоторую прямую так, чтобы характеристика W*(jω) лежала справа от этой прямой. Если такую прямую провести нельзя, то это значит, что абсолютная устойчивость для данной системы невозможна. Очертание нелинейности может быть неизвестным. Критерий целесообразно применять в случаях, когда нелинейность может в процессе работы САУ изменяться, или ее математическое описание неизвестно.

Метод припасовывания нашел свое применение при построении фазовых портретов нелинейных систем, которые могут быть представлены в виде линейной и нелинейной частей (рис. 11.10), причем линейная часть является системой второго порядка, а нелинейная часть характеризуется кусочно­линейной статической характеристикой.

линеиная часть

нелинейная часть

Рис. 11.10 Структурная схема нелинейной системы

Согласно этому методу фазовая траектория строится по частям, каждой из которых соответствует линейный участок статической характеристики. На таком рассматриваемом участке система линейна и ее решение может быть найдено непосредственным интегрированием уравнения для фазовой траекто­рии этого участка. Интегрирование уравнения при построении фазовой траектории производится до тех пор, пока последняя не выйдет на границу следующего участка. Значения фазовых координат в конце каждого участка фазовой траектории являются начальными условиями для решения уравнения на сле­дующем участке. В этом случае говорят, что начальные условия припасовываются, т.е. конец преды­дущего участка фазовой траектории является началом следующего. Граница между участками называ­ется линией переключения.

Таким образом, построение фазового портрета методом припасовывания производится в следую­щей последовательности:

выбираются или задаются начальные условия;

интегрируется система линейных уравнений для того линейного участка, на который попали на­чальные условия, до момента выхода на границу следующего участка;

производится припасовывание начальных условий.

Метод гармонической линеаризации

Общих универсальных методов исследования нелинейных систем не существует - слишком велико разнообразие нелинейностей. Однако, для отдельных видов нелинейных систем разработаны эффективные методы анализа и синтеза.

  • Метод гармонической линеаризации предназначен для представления нелинейной части системы некоторой эквивалентной передаточной функцией, если сигналы в системе могут рассматриваться, как гармонические.
  • Этот метод может быть эффективно использован для исследования периодических колебаний в автоматических системах, в том числе, условий отсутствия этих колебаний, как вредных.

Характерным для метода гармонической линеаризации является рассмотрение одного единственного нелинейного элемента. НЭ можно разделить на статические и динамические . Динамические НЭ описываются нелинейными дифференциальными уравнениями и являются гораздо более сложными. Статические НЭ описывают-ся функцией F(x).

Предмет:

"Теория автоматического управления"

Тема:

"Методы исследования нелинейных систем"

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

,

где – начальные условия.

Если отклонения

не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат -

в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)



В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4) скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

. (6)

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

(т.е. ). (7)

При этом переходной процесс описывается уравнениями

x = A sin (wt+j), (8)

y = Aw cos (wt+j),

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Если обозначить


Уравнение эллипса можно получить решением уравнения фазовых траекторий

(9)

Состояние равновесия определяется из условия

,

при этом x 0 = y 0 = 0.

Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

(10)

При этом переходной процесс описывается уравнениями:

Из уравнения фазовых траекторий

получим уравнение

Это уравнение семейства гипербол при изменении A (рис 5).


Предмет:

"Теория автоматического управления"

Тема:

"Методы исследования нелинейных систем"

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

где – начальные условия.

Если отклонения не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат - в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)


В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4)

где скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

(т.е. ). (7)

При этом переходной процесс описывается уравнениями

x = A sin (wt+j), (8)

y = Aw cos (wt+j),

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Если обозначить


Уравнение эллипса можно получить решением уравнения фазовых траекторий

(9)

Состояние равновесия определяется из условия

,

при этом x 0 = y 0 = 0.

Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

При этом переходной процесс описывается уравнениями:

Из уравнения фазовых траекторий получим уравнение


Это уравнение семейства гипербол при изменении A (рис 5).


Особая точка называется "седло". Уравнения асимптот (сепаратрис) при А = 0 имеют вид:

3. Пусть корни характеристического уравнения (3) имеют вид

Фазовая траектория имеет вид сворачивающейся спирали (рис. 6), а точка равновесия называется "устойчивый фокус".

4. Пусть корни характеристического уравнения (3) имеют вид


(12)

Переходный процесс представляет собой расходящиеся колебания, фазовая траектория – разворачивающаяся спираль. Особая точка называется "неустойчивый фокус" (рис. 7).

5. Пусть корни характеристического уравнения (3) имеют вид

(13)

Переходный процесс имеет апериодический характер. Особая точка называется "устойчивый узел" (рис. 8).


6. Пусть корни характеристического уравнения (3) имеют вид

(14)

Особая точка называется "неустойчивый узел" (рис. 9).

4. Методы построения фазовых портретов

Для построения фазовых портретов можно использовать различные методы: метод дифференциальных уравнений, метод изоклин, и др.

Метод дифференциальных уравнений . Сущность метода заключается в том, что по дифференциальным уравнениям отдельных участков нелинейного элемента строят соответствующие фазовые портреты на плоскости.

Метод изоклин – это метод линий постоянного наклона.

Пусть даны уравнения нелинейной системы:

(15)


где: – произвольные функции.

Чтобы получить фазовый портрет исключим время:

. (16)

Пусть , при этом – это уравнение линии в плоскости (x 0 y). Каждому значению константы с соответствует некоторая линия, обладающая следующим свойством: в каждой точке линии , т.е. если фазовая траектория пересекает изоклину, то она имеет постоянный наклон рис. 10.


Если провести достаточное число таких линий с соответствующими наклонами, то можно построить фазовый портрет системы. При этом точность зависит от числа изоклин. Направление движения определяется по правилу: если производная , x >0, то движение такое, что x возрастает.

5. Построение фазового портрета нелинейной системы

Рассмотрим релейную следящую систему, схема которой приведена на рис. 11.



x 1 НЭ У U пит Д ТГ P U 0




Если a¹b на вход НЭ с релейной характеристикой (рис. 12) подается сигнал При этом: b – угол поворота задающей оси; a – угол поворота отрабатывающего потенциометра.

z

– a 2 – a 1

Вследствие этого на двигатель подается напряжение ±, двигатель вращается в определенном направлении в соответствии с полярностью подаваемого напряжения до тех пор, пока оно не станет равным нулю.

Для улучшения качества переходного процесса в систему может быть включена отрицательная обратная связь по скорости двигателя с помощью тахогенератора (ТГ).

Запишем уравнения элементов системы. Для двигателя постоянного тока с независимым возбуждением

(17)

Так как поток возбуждения = const, то . Допустим, момент нагрузки мал, при этом =0.

Передаточную функцию для якорной цепи K 1 (p) можно получить из ее дифференциального уравнения

(18)

Для редуктора и угла поворота вала двигателя

(19)

Для тахогенератора

. (20)


На основании функциональной схемы и полученных передаточных функций элементов системы составляем структурную схему рис. 13


Для построения фазового портрета необходимо записать систему дифференциальных уравнений.

Рассмотрим свободное движение системы (b=0) при этом x = a.

Дифференциальное уравнение нелинейной системы имеет вид

(21)

Представим уравнение в виде системы уравнений:

(22)

Построим фазовый портрет. Для простоты построения фазового портрета делаем некоторые упрощения:

1) Пусть обратная связь по скорости – отсутствует (К = 0).

2) Характеристика нелинейного элемента однозначна (рис. 14).

При этом:

(23)

С учетом принятых допущений система уравнений упрощается.

(24)

Построим характеристику для каждой зоны.

Пусть – a £ x £ a, ¦(x) = 0.

При этом исходная система имеет вид:

(25)

Решение этого уравнения имеет вид , т.е. наклон фазовых траекторий всюду постоянный (отрицательный).

Определим равновесное состояние системы из условия:


(26)

Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [– а, а]. Фазовые траектории на участке – а< x < a представляют собой прямые с коэффициентом наклона -1/Т 1 при различных значениях начальных условий.

На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.

Пусть х > a, . При этом исходная система нелинейных уравнений имеет вид

(27)

где c i - семейство изоклин, которое представляет собой прямые параллельные оси х, т.е. , где определяется из выражения для

. (28)

Таким образом

. (29)

Задаваясь значениями , строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.

Так как . Например, если , то a = 90°.

Пусть х < – a, . Построение выполняем аналогично, так как знак изменился, то будут другие углы пересечений изоклин фазовой траекторией. Фазовый портрет системы приведен на рис. 15.


Рис. 14 Рис. 15

Снимем упрощение К = 0, т.е. рассмотрим влияние отрицательной обратной связи по скорости двигателя на характер фазовой траектории.

При этом уравнения имеют вид:

(30)

Пусть , при этом переключение будет происходить при условии (а не условии х = а), это уравнение линии (рис. 16)


При этом количество перерегулирований уменьшается; можно подобрать такой наклон, при котором нет переколебаний.

Рассмотрим фазовый портрет без ограничений. В системе без ограничений фазовый портрет можно представить на трехлистной поверхности с наклонными гранями (рис. 17.) При этом лист 2 соответствует зоне нечувствительности z=0, лист 1 соответствует отрицательным значениям z, а лист 3 положительным. Вследствие гистерезиса имеет место частичное наложение листов.

Рис. 16 Рис. 17

Исследуем систему. Исследуем влияние отрицательной обратной связи по скорости двигателя (т.е. влияние величины – К). Пусть значение К увеличивается, при этом наклон прямых уменьшается, и может получиться, что срез будет более пологим чем наклон характеристики в средней части. Это приводит к частым переключениям. Такой режим называется скользящим. Если зона очень узкая, то движение как бы соскальзывает к установившемуся режиму (рис. 18а).

Если изменить знак обратной связи с отрицательной связи на положительную связь, то при этом изменится наклон линий переключения, и количество колебаний будет увеличиваться, система будет "раскачиваться". Система работает, как генератор и может появиться либо замкнутый цикл – автоколебания, либо расходящийся переходный процесс (рис. 18б).


Достоинства метода: простота и наглядность для систем 2-го порядка; пригодность для любого типа нелинейных элементов.

Недостатки: метод громоздкий для систем выше 2-го порядка, поэтому при n >2 не применяется.

Рассмотрим несколько примеров построения фазовых портретов нелинейных систем управления

Пример 1. Пусть задана система, состоящая из линейной части и нелинейного элемента (усилитель с ограничением по модулю) (рис. 19). Это кусочно-линейная система, так как на отдельных участках она ведет себя как линейная (в области) – а, +а[). Допустим в области (] – а, +а[) коэффициент усиления большой и система неустойчива а фазовый портрет характеризуется особой точкой "неустойчивый фокус". За пределами области коэффициент усиления мал, допустим, что при этом система устойчива и характеризуется особой точкой – "устойчивый фокус".

При больших отклонениях x > |a| общий коэффициент усиления системы мал, система устойчива, процесс затухает.

При малых отклонениях общий коэффициент усиления системы большой – процесс расходится к замкнутой траектории, которая характеризует наличие устойчивых автоколебаний (рис. 20).

В этой системе три типа движений: автоколебания; сходящиеся колебания; расходящиеся колебания



Пример 2. Пусть задана система с характеристикой нелинейного звена типа "зона нечувствительности" (рис. 21). Необходимо построить фазовый

портрет данной системы, определить наличие предельных циклов и проанализировать их устойчивость.

Построим фазовый портрет

1) При – a < x < +a f(x) = 0, а система уравнений имеет вид



Фазовый портрет в этой области представляет семейство прямых с коэффициентом к = -1, а состояние равновесия устойчиво по Ляпунову и представляет отрезок оси y = 0 на интервале – a

2) При x > +a f(x) = x – a, а система уравнений имеет вид

и угол пересечения фазовой траекторией изоклины по формуле a = arctg c, результаты приведены в таблицах 1 и 2.

Таблица 1

Таблица 2

3) При x < – a f(x) = x + a, а система уравнений имеет вид

Пример 4. Для заданной системы (рис. 26) построить примерный фазовый портрет.



Исходную схему можно представить в виде (рис. 27).

Построим фазовый портрет.

1) При –1 < x < +1 f(x) = x, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле

2) При x > +1 f(x) = 1, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле и угол пересечения фазовой траекторией изоклины по формуле a = arctg c.

3) При x < -1 f(x) = -1.

Левая часть фазового портрета строится аналогично правой.

Литература

1. Атабеков Г.И., Тимофеев А.Б., Купалян С.Д., Хухриков С.С. Теоретические основы электротехники (ТОЭ). Нелинейные электрические цепи. Электромагнитное поле. 5-е изд. Изд-во: ЛАНЬ, 2005. – 432 с.

2. Гаврилов Нелинейные цепи в программах схемотехнического моделирования. Изд-во: СОЛОН-ПРЕСС, 2002. – 368 с.

3. Дорф Р., Бишоп Р. Автоматика. Современные системы управления. 2002 г. – 832 с.

4. Теория автоматического управления. Учеб. для вузов по спец. "Автоматика и телемеханика". В 2-х ч./ Н.А. Бабаков, А.А. Воронов и др.: Под ред. А.А. Воронова. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1986. – 367 с., ил.

5. Харазов В.Г. Интегрированные системы управления технологическими процессами: Справочник. Издательство: ПРОФЕССИЯ, ИЗДАТЕЛЬСТВО, 2009. – 550 с.